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Hearts under chronic hemodynamic disease stress develop 
pathological left ventricular hypertrophy (LVH), a com-

plex remodeling response that predisposes to heart failure.1 
Pathological remodeling is associated with interstitial fibro-
sis, cardiomyocyte apoptosis, contractile dysfunction, and 
arrhythmia.2 The heart also remodels with chronic exercise or 
pregnancy, but such physiological LVH is unaccompanied by 
fibrosis, apoptosis, or significant contractile dysfunction and 
carries no risk of failure.3 Delineation of the molecular mecha-
nisms driving these divergent responses may inform therapeu-
tic strategies for pathological LVH and heart failure. Much 
work has focused on targeted investigation of specific signal-
ing pathways in the pathogenesis of physiological or patho-
logical LVH and revealed novel insights.1 However, few novel 
therapies have emerged, and complementary approaches for 
target discovery need to be considered.4

Clinical Perspective on p 597
Network-based analyses of disease phenotypes involve 

systems-level characterization of biological mechanisms to 
uncover the complex relationships between genes or proteins 
and their environment.5 Analysis of the functional architec-
ture of gene and protein networks that orchestrate disease 
development might provide a useful foundation for novel 
therapeutic approaches.6 Indeed, such approaches have begun 
to yield positive results in areas such as oncology,7 but have 
only recently been applied to cardiac disease.8,9 Previous stud-
ies used microarray experiments to explore gene expression 
differences in cardiac hypertrophy.10 Such studies reported 
that genes associated with pathological hypertrophy included 
inflammatory, apoptotic, fetal reprogramming, and oxidative 
stress pathways whereas genes associated with physiologi-
cal hypertrophy affected metabolism and insulin signaling.11 

Background—The molecular mechanisms underlying similarities and differences between physiological and pathological 
left ventricular hypertrophy (LVH) are of intense interest. Most previous work involved targeted analysis of individual 
signaling pathways or screening of transcriptomic profiles. We developed a network biology approach using genomic and 
proteomic data to study the molecular patterns that distinguish pathological and physiological LVH.

Methods and Results—A network-based analysis using graph theory methods was undertaken on 127 genome-wide 
expression arrays of in vivo murine LVH. This revealed phenotype-specific pathological and physiological gene 
coexpression networks. Despite >1650 common genes in the 2 networks, network structure is significantly different. 
This is largely because of rewiring of genes that are differentially coexpressed in the 2 networks; this novel concept of 
differential wiring was further validated experimentally. Functional analysis of the rewired network revealed several distinct 
cellular pathways and gene sets. Deeper exploration was undertaken by targeted proteomic analysis of mitochondrial, 
myofilament, and extracellular subproteomes in pathological LVH. A notable finding was that mRNA–protein correlation 
was greater at the cellular pathway level than for individual loci.

Conclusions—This first combined gene network and proteomic analysis of LVH reveals novel insights into the integrated 
pathomechanisms that distinguish pathological versus physiological phenotypes. In particular, we identify differential 
gene wiring as a major distinguishing feature of these phenotypes. This approach provides a platform for the investigation 
of potentially novel pathways in LVH and offers a freely accessible protocol (http://sites.google.com/site/cardionetworks) 
for similar analyses in other cardiovascular diseases.   (Circ Cardiovasc Genet. 2013;6:588-597.)
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However, a global framework of the mechanisms driving simi-
larities and differences between these phenotypes is lacking.

We developed a network-based genomic and proteomic 
framework for comparing gene coexpression networks underly-
ing pathological and physiological LVH. Comprehensive char-
acterization of network properties allowed us to identify that a 
large number of genes were differentially wired in pathological 
LVH. Integration of transcriptomic data of pathological LVH 
with a proteomic analysis of mitochondrial, myofilament, and 
extracellular subproteomes allowed the establishment of gene–
protein relationships for individual loci and entire pathways. 
This comprehensive analysis at transcriptome and proteome lev-
els reveals novel insights into the molecular basis of pathological 
versus physiological LVH and provides a resource for further 
studies of genotype–phenotype relationships in this condition.

Methods
Detailed methods are provided in the online-only Data Supplement.

Gene Expression Analysis
Six mouse microarray data sets (n=127 arrays) were obtained from 
ArrayExpress (Table 1).12 Raw gene expression was processed using 
robust multi-array average, and each array was inspected for outlying 
samples. Affymetrix probe identifiers were mapped to corresponding 
Entrez gene identifiers.13

Graph Theory Methods
Reverse Engineering Gene Coexpression Networks
Gene coexpression networks were reconstructed by express-
ing pairwise similarity in expression profiles by the Pearson 
correlation coefficient (PCC). Gene pairs that correlated above 
a predefined PCC threshold were represented as an undirected 
unweighted network, where nodes correspond to genes and 
links (edges) correspond to coexpression between genes. We 
used a data-driven computational method to calculate the 
appropriate PCC threshold for each microarray data set.

Network Topology
Node degree denotes the number of links a node has to other 
nodes. Nodes with high degree in biological networks (or 
hubs) are reported to be essential for processes such as cell 

survival.14 Betweenness centrality is the number of short-
est paths that pass through a node. Nodes with the high-
est betweenness represent the critical points of information 
flow within a network. Eigenvector centrality is a measure 
of overall network connectivity, denoting connections of 
nodes to other nodes that are central within the network. 
Clustering coefficient represents the number of node neigh-
bors that are also interconnected. In protein–protein interac-
tion networks, genes harboring disease-causing mutations 
tend to be distant from dense-clustering neighborhoods.15 
The shortest path is the shortest distance connecting any 
2 genes. The diameter is the longest short path between any 
pair of genes in the network.

Gene Rewiring
The number of connections of each gene (node degree) was 
scaled to a value between 0 and 1 by dividing each node degree 
by the largest degree in a network. Differential wiring of genes 
common to pathological and physiological networks was com-
puted by subtracting the node degree in the physiological net-
work from node degree in the pathological network.16 Thus, 
genes with positive rewiring are more central in the pathologi-
cal network compared with physiological network.

Animal Studies
Procedures were performed in accordance with the Guidance 
on the Operation of the Animals (Scientific Procedures) Act, 
1986 (United Kingdom). Aortic constriction (AC) and running 
exercise were performed as described.17,18

Reverse Transcription Polymerase Chain Reaction
RNA was isolated from 22 mouse LV samples (wild type 
[WT]-sham: n=6; AC: n=6; WT-sedentary: n=5; WT-running: 
n=5). Transcript expression was quantified using TaqMan 
probes (Applied Biosystems).

Nanoflow Liquid Chromatography–Tandem  
Mass Spectrometry
Liquid chromatography–tandem mass spectrometry analyses 
of LVs from 4 WT sham-operated mice, 4 angiotensin II–
induced hypertrophy, and 4 LVs after AC were performed as 

Table 1.  Murine Cardiac Hypertrophy Data Sets Used for Reconstruction of Coexpression Networks

Data Set Description ArrayExpress Nodes Edges Degree Clustering Coefficient

AC1 Male, time series AC (n=18) E-MEXP-105 8688 1 514 278 348.6 0.29

AC2 Sham and AC (n=34) E-GEOD-76 8688 3 272 821 753.4 0.40

AT1 Wild type; cardiac-specific AT1 receptor 
overexpression (n=16)

E-GEOD-2355 8688 1 303 988 300.1 0.28

Akt Wild type; short-term cardiac-specific Akt1 
overexpression (n=18)

E-GEOD-3383 8688 1 404 578 327.4 0.29

PI3K Wild type; cardiac-specific caPI3K or dnPI3K 
overexpression (n=9)

E-GEOD-558 8579 1 565 558 364.9 0.33

Swimming Wild type; short-term exercise; long-term  
exercise (n=29)

E-GEOD-77 8579 2 367 500 551.9 0.35

Pathological Consensus pathological hypertrophy network N/A 3634 13 558 7.5 0.11

Physiological Consensus physiological hypertrophy network N/A 3156 4486 2.8 0.06

AC indicates aortic constriction; AT, angiotensin II receptor type 1; caPI3K, constitutively active phosphatidylinositol 3-kinase; dnPI3K, dominant-negative 
phosphatidylinositol 3-kinase; and N/A, not applicable.
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described,19 with modifications. We used a novel protocol that 
enriches extracellular matrix (ECM)19 and myofilament20 pro-
teins (Methods in the online-only Data Supplement).

Statistical Analysis
Differential expression analysis was performed by fitting a lin-
ear model with empirical Bayes shrinkage to the log intensities 
of expression values for each gene.21 P values were adjusted 
to control the expected false discovery rate using Benjamini–
Hochberg correction. False discovery rate–controlled values 
of P<0.05 were considered significant.

Results
Construction of the LVH Networks
After data preprocessing and outlier removal (Methods in 
the online-only Data Supplement), our analysis included 124 
samples from 6 mouse microarray data sets in different mod-
els of pathological and physiological LVH (Table 1). For each 
data set, we created a gene coexpression matrix of pairwise 
PCC (Figure I in the online-only Data Supplement). Only gene 
pairs with significant coexpressions were considered. Because 
all LVH networks contained a large number of edges (≤3.3 
million; Table 1), nodes and edges that may arise because of 
experimental variability were filtered through intersection of 
networks. The intersection of the 3 pathological networks con-
tained 3634 genes and 13 558 links (pathological, Tables I and 
III in the online-only Data Supplement) whereas the intersec-
tion of the 3 physiological networks produced comparable num-
bers, namely, 3156 genes and 4486 links (physiological, Tables 
II and IV in the online-only Data Supplement; Figure  1A).  
These intersections were compared against a random back-
ground by shuffling edges in the original networks 200× while 
preserving their degrees and then calculating their intersec-
tions. Intersections of randomized pathological and physi-
ological hypertrophy networks contained an average of 3882.9 
(SD=91.2) and 3312.6 (SD=77.7) links, respectively. Thus, the 
identification of 13 558 and 4486 conserved coexpressions in 
the real pathological and physiological networks was consid-
ered a nonrandom instance against the simulated background 
(z score=106.13 and 15.1, respectively; Figure 1A–1D).

Hypertrophy Networks Are Phenotype Specific
We tested the phenotype specificity of the pathological 
and physiological networks by enriching the gene sets for 
established mouse mutant phenotypes using the MamPhEA 
tool.22 Pathological network genes were enriched for pheno-
types including cardiovascular system phenotype (adjusted 
P=1.6×10−7), prenatal lethality (adjusted P=2.9×10−6), abnor-
mal cardiovascular system morphology (adjusted P=5.3×10−6), 
and abnormal blood vessel morphology (adjusted P=5.7×10−4) 
whereas physiological network genes were enriched primarily 
for prenatal lethality (P=4.9×10−6; Figure 2A and 2B). Thus, 
the derived gene networks obtained through computational 
integration of the microarray expression data reflect the car-
diovascular phenotype.

We examined whether the genes contributing to the cardio-
vascular phenotype are more connected than other genes in 
the pathological and physiological networks. We identified 19 

and 6 layers of differential connectivity in the pathological 
and physiological networks, respectively, by peeling23 each 
gene network (Methods in the online-only Data Supplement). 
These layers reflect gene connectivity neighborhoods such that 
the first peeled layer contains genes with only a few connec-
tions whereas the last layer contains the most connected genes 
(Figure II in the online-only Data Supplement). Interestingly, 
pathological network cardiovascular genes (≈22%) local-
ized to the intermediate (layers 9–10) but not dense layers 
(Figure  2C). Conversely, physiological network cardiovas-
cular genes localized to the densest layers (Figure 2D). This 
structural property of cardiovascular genes in the context of 
LVH phenotypes may be used to identify additional genes 
involved in cardiac function.24

Next, we expanded the functional characterization of coex-
pressed genes using enrichment analysis of genes that appear 
only in pathological (n=1980) or physiological (n=1502) net-
work. The pathological-specific group had a predominance of 
genes involved in metabolic, apoptotic, and energy production 
processes, with subcellular localization to mitochondria and 
extracellular region. In contrast, physiological-specific genes 
were involved in processes including angiogenesis and cell cycle 
(Table V in the online-only Data Supplement). Similar enrich-
ment analysis for all pathological and physiological network 
genes is shown in Table VI in the online-only Data Supplement.

Topological Properties of Gene Networks
We first assessed the stability of the pathological and physio-
logical networks to targeted removal of hubs (simulated attack) 

Figure 1.  Genome-wide transcriptional networks in pathological 
and physiological hypertrophy. A and B, Venn diagrams of com-
mon nodes and coexpressions in pathological and physiological 
hypertrophy networks. Pathological and physiological networks 
reflect intersections of all hypertrophic interactomes. C and D, 
Frequency histograms comparing sizes of the pathological and 
physiological networks (denoted by conserved nodes and edges) 
with randomly generated networks with preserved node degree 
distributions. The x axis represents number of nodes or edges 
whereas the y axis represents number of networks. AC indicates 
aortic constriction; AT, angiotensin II receptor type 1; and PI3K, 
phosphatidylinositol 3-kinase.
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or random nodes (simulated error).25 Although removal of 
hubs (attack) had little effect on the pathological network, the 
physiological network rapidly collapsed into smaller subnet-
works, reflected by increasing network diameter (Figure 3A).  
This suggests an unexpected level of robustness of gene coex-
pressions in the pathological network. Removal of random genes 
(error) had no effect on either network diameter (Figure 3A).

Comparison of global topologies demonstrated that the 
pathological network is denser than the physiological network 
(density 0.002 versus 0.0009), with a lower network diameter 
(20 versus 25). Local topological properties of the networks are 
shown in Figure 3A–3F and listed in Tables III and IV in the 
online-only Data Supplement. Overall, the pathological net-
work had a larger average node degree (7.5 versus 2.8), eigen-
centrality (0.03 versus 0.01), and clustering coefficient (0.11 
versus 0.06) but smaller betweenness (5921.8 versus 6573) and 

average shortest path length (5.7 versus 9.2; Figure 3A–3F). 
This topological comparison suggests that the genes under 
pathological stress form more coexpression links, yielding a 
dense and robust network. This phenomenon could reflect tight 
transcriptional regulation under pathological conditions.26

Identification of Gene Rewiring
When the pathological and physiological networks were 
compared on a coexpression level, 1654 (46%) of 3634 
genes in the pathological network were also present in the 
physiological network. However, despite this large number 
of common genes, the 2 networks shared only 60 coexpres-
sion links (Figure III in the online-only Data Supplement). 
We further assessed topological overlap between pathologi-
cal and physiological networks at the gene community level. 
For each network, gene communities were identified by 

Figure 3.  Topology of the pathological and physio-
logical networks. A, Network diameter as a function 
of number of genes removed from the pathological 
and physiological networks. Removal of hubs (most 
connected genes) is labeled as attack whereas 
removal of random nodes is labeled as error. B to 
F, Frequency distributions of gene topologies in the 
pathological and physiological networks.

Figure 2.  Phenotype specificity of the pathologi-
cal and physiological left ventricular hypertrophy 
networks. A and B, MamPhEA-driven enrichment of 
genes specific to the pathological and physiological 
networks for phenotypes associated with mutations 
in these genes. Vertical red lines indicate adjusted  
P =0.05. C and D, Relationships between gene 
coexpression layers and frequency of gene impli-
cated in cardiovascular phenotypes identified in 
each layer. Increasing layer numbers correspond 
to regions of increasing densities in the network. 
Inset graphs visualize pathological and physiologi-
cal gene coexpression network, with darker node 
colors reflecting higher gene connection densities. 
Dotted lines represent locally weighted scatter plot 
smoothing fit.

 by guest on December 19, 2013http://circgenetics.ahajournals.org/Downloaded from 

http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/


592    Circ Cardiovasc Genet    December 2013

optimizing network modularity (Methods in the online-only 
Data Supplement).23 Similarity between gene communities 
was expressed using Jaccard coefficient, computed as a ratio 
of the number of common genes in any 2 pathological and 
physiological network communities to the total number of 
genes in these communities. Disparate and identical com-
munities would correspond to Jaccard coefficient of 0 and 
1, respectively. On average, Jaccard coefficient for 350 and 
411 communities in the pathological and physiological net-
works, respectively, was 0.0002. Therefore, pathological and 
physiological networks do not share common topologies at 
either individual gene coexpression level or gene commu-
nity level. Most of the shared coexpressions were between 
genes encoding ECM proteins (eg, Col1a1, Col4a1, Col5a2, 
Col6a2, and Serpinf1).

Because of the low frequency of common coexpressions 
between pathological and physiological networks, it is likely 
that a significant subset of hypertrophy-associated genes is 
subject to differential coexpression, or rewiring, in response to 
pathological stress. Consequently, differentially wired genes 
may contribute to phenotypic differences between pathologi-
cal and physiological LVH. To construct the rewired network, 
subnetworks consisting of 1654 genes shared by the patholog-
ical and physiological interactomes were extracted and then 
merged. Because several genes were singletons (single nodes 
without additional coexpressions), the rewired network was 
reduced to 1553 genes connected by 6197 links (Figure 4A).

For each rewired gene, we calculated a differential wiring 
score (see Methods; Figure 4B). A score >0 indicates that a 
gene is more connected in the pathological network whereas 
a score <0 indicates greater connectivity in the physiologi-
cal network. Overall, 539 and 1014 genes had positive and 
negative differential wiring scores, respectively (Table VII 
in the online-only Data Supplement). Other parameters of 

local network topology (eg, betweenness centrality) are also 
reported in Table VII in the online-only Data Supplement.

Experimental Validation of Differentially  
Wired Genes
Gene rewiring can be interpreted as acquisition or loss of 
coexpression links in a stimulus-dependent manner. This is a 
direct consequence of changes in gene expression. To experi-
mentally validate implication of differentially wired genes 
in LVH phenotypes, we used quantitative polymerase chain 
reaction to measure expression profiles of 10 rewired genes, 
namely, Col1a1, Col4a1, Col5a2, Paip2b, Phtf2, Prps1, 
Rnf14, Serpinh1, Sparc, and Tiprl (Table 2), in mouse mod-
els of pathological (AC, n=6) and physiological (treadmill, 
n=6) LVH and corresponding controls (WT-sham, n=5; WT-
sedentary, n=5; Figure IV in the online-only Data Supple-
ment). These genes were selected to reflect diverse ranges of 
differential wiring, and their respective fold changes in the 
microarray were not considered (Figure 4B; Table 2). Differ-
ential expression analysis confirmed that all transcripts, with 
the exception of Rnf14, were significantly changed in AC 
compared with sham-operated controls (4 downregulated, 5 
upregulated; P<0.05; Table 3; Figure 4C). Indeed, Rnf14 had 
a low degree of rewiring of −0.002. Importantly, none of the 
transcripts was differentially expressed in physiological LVH 
compared with WT hearts (Figure 4C), which is consistent 
with our computational evidence of rewiring in manifestation 
of pathological LVH.

Functional Characteristics of Rewired Genes
Given that differentially wired genes may reflect potentially 
important contributors to the pathological LVH phenotype, 
we further analyzed these genes. Using gene mutation infor-
mation from the Mouse Genome Informatics database, it was 

Figure 4.  Rewiring of hypertrophy gene 
networks. A, The rewired network con-
sisting of 1553 genes. Nodes indicate 
genes whereas red and blue edges cor-
respond to pathological and physiologi-
cal coexpressions, respectively. Node 
positions in each plot are kept constant 
to facilitate visualization of rewired 
coexpressions. B, Density map of dif-
ferential wiring scores (y axis) for 1553 
genes (x axis). Darker colors correspond 
to increased point density. Red points 
indicate the 10 rewired genes selected 
for further validation, with rewiring scores 
given in parentheses. C, Box plots visu-
alizing quantitative polymerase chain 
reaction validation of 10 rewired genes. 
The y axis reflects GAPDH-normalized 
transcript expression values.
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noted that the rewired network included 241 (16%) genes in 
which null mutations result in cardiac phenotypes (eg, inter-
leukin-1 receptor-associated kinase 1, superoxide dismutase, 
and vascular endothelial growth factor B). In addition, car-
diovascular system phenotype and abnormal cardiovascular 
morphology were the most enriched phenotypes (adjusted 
P=6.3×10−4 and 1.9×10−3; Figure V in the online-only Data 
Supplement). Gene set enrichment of all rewired genes for 
Reactome pathways, as well as gene ontology biological pro-
cess and gene ontology cellular component terms, revealed 
several distinct functional groups (Table 3), including major 

histocompatibility complex class II antigen presentation and 
tricarboxylic acid cycle and respiratory electron transport 
pathways with cellular localization to ECM, mitochondrial 
part, and stress fiber.

Functional enrichment of genes in the top 25th percentile 
of differential wiring (n=388 genes) identified gene ontology 
biological process terms such as hydrogen peroxide metabolic 
process and positive regulation of macroautophagy (Table 
VIII in the online-only Data Supplement). Interestingly, genes 
in the bottom 25th percentile of differential wiring were not 
significantly enriched.

Table 3.  Top 10 Most Enriched Functional Terms in the Rewired Network

Reactome GO-BP GO-CC

Term Estimate Genes Term Estimate Genes Term Estimate Genes

MHC class II antigen 
presentation

0.98 21 Regulation of RNA splicing 0.82 21 Extracellular 
matrix

0.92 40

TCA cycle and respiratory 
electron transport

0.96 37 Response to metal ion 0.77 37 Cytosol 0.74 138

Mitochondrial protein import 0.78 11 Protein 
heterooligomerization

0.75 11 Spliceosomal 
complex

0.72 20

Developmental biology 0.74 66 Energy derivation by 
oxidation of organic 

compounds

0.46 66 Mitochondrial part 0.71 86

Interferon signaling 
(REACT_127785.1)

0.64 14 Coenzyme metabolic 
process

0.26 14 Extrinsic 
to plasma 
membrane

0.62 17

Platelet degranulation 0.64 21 Nucleoside triphosphate 
metabolic process

0.24 21 Postsynaptic 
membrane

0.41 16

Amino acid and derivative 
metabolism

0.59 41 Generation of precursor 
metabolites and energy

0.22 41 Stress fiber 0.32 12

Circadian clock 0.57 13 Regulation of wound 
healing

0.21 13 COPI-coated 
vesicle

0.28 6

Cytosolic tRNA aminoacylation 0.49 8 Hydrogen peroxide 
metabolic process

0.17 8 Actomyosin 0.27 13

Generic transcription pathway 0.45 23 Negative regulation 
of cellular component 

organization

0.16 23 Soluble fraction 0.27 49

Estimate indicates the posterior probability of term enrichment, whereby most enriched terms will be characterized by high probability estimate values; GO-BP, gene 
ontology biological process; GO-CC, gene ontology cellular component; MHC, major histocompatibility complex; and TCA, tricarboxylic acid cycle.

Table 2.  Quantitative Polymerase Chain Reaction Validation of Rewired Genes

Symbol Name Function Rewiring Fold Change (AC vs Sham) P Value (AC vs Sham)

Col1a1 Collagen, type I, α 1 Collagen biosynthesis 0.18 1 9.90×10−10

Col4a1 Collagen, type IV, α 1 Collagen biosynthesis −0.05 0.6 4.50×10−4

Col5a2 Collagen, type VI, α 2 Collagen biosynthesis 0.23 1.04 2.00×10−7

Paip2b Poly(A)-binding protein–interacting protein 2B Translation repressor activity −0.25 −0.11 0.0499

Phtf2 Putative homeodomain transcription factor 2 DNA binding −0.16 −0.15 0.0114

Prps1 Phosphoribosyl pyrophosphate synthetase 1 Nucleotide synthesis −0.5 −0.19 0.0025

Rnf14 Ring finger protein 14 Transcription coactivator activity 0 0.006 0.938

Serpinh1 Serpin peptidase inhibitor, clade H (heat shock 
protein 47), member 1

Stress response −0.01 0.25 0.0046

Sparc Osteonectin Collagen binding 0.41 0.55 2.00×10−7

Tiprl TIP41, TOR signaling pathway regulator-like DNA damage checkpoint −0.17 −0.12 0.0051

AC indicates aortic constriction; and Paip2b, poly(A)-binding protein–interacting protein 2B.

 by guest on December 19, 2013http://circgenetics.ahajournals.org/Downloaded from 

http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/


594    Circ Cardiovasc Genet    December 2013

Analysis of the Extracellular and Myofilament 
Proteomes in Pathological LVH
The above computational analysis and quantitative poly-
merase chain reaction validation suggest that genes localized 
to the ECM and myofilaments, among others, are differen-
tially wired in pathological LVH. Thus, we further explored 
these findings using a proteomic approach. LVs were obtained 
from 2 murine models of pathological hypertrophy—angio-
tensin II infusion (n=4) and AC (n=4)—and sham-operated 
controls (n=4). To enable a better characterization of myofila-
ment and ECM proteins, we enriched for these subproteomes 
using solubility-based protein subfractionation methodologies 
(see Methods in the online-only Data Supplement).19,20 West-
ern blotting of the subfractions confirmed that the extracts 
were rich in myofilament (eg, troponin I type 3 [TNNI3_
MOUSE]) and extracellular proteins (eg, collagen α-2 [VI] 
[CO6A2_MOUSE], glutathione peroxidase 3) whereas mem-
brane and cytosolic proteins (eg, ITA8_MOUSE, β-actin 
[ACTB_MOUSE]) were depleted (Figure 5A). Subsequently, 
the enriched extracts were separated by SDS-PAGE, sub-
jected to in-gel tryptic digestion, and analyzed by liquid chro-
matography–tandem mass spectrometry (see Methods). Two 
complementary approaches, spectral counting and peptide ion 
intensities, were used to estimate protein abundance. Quanti-
tative information is available from both methods, which pro-
duced comparable results (Figure VI and Data Sets I and II in 
the online-only Data Supplement). For subsequent analysis, 

we focused on spectral counting–based quantification, given 
its greater dynamic range than peptide ion intensities (2268 
versus 385 proteins).

Principal component analysis of 1300 proteins that passed 
filtering criteria (Methods in the online-only Data Supplement) 
in the proteomic data revealed a separation of sham-operated 
controls and hypertrophic samples (Figure  5B). Enrichment 
of 1300 proteins for gene ontology cellular component terms 
confirmed successful enrichment for myofilament (n=68) and 
extracellular (n=100) proteins in the extracted subproteome. 
In addition, mitochondrial proteins were also detected (n=292; 
Figure 5C). Spectral count information for the different sub-
proteomes is visualized in Figure 5D and listed in Table IX in 
the online-only Data Supplement. Overall, 12 of 30 (40%), 80 
of 226 (35%), and 22 of 102 (22%) rewired genes that were 
predicted to be myofilament, mitochondrial, and extracellular 
were also quantified by proteomics.

To define the relationship between changes in gene expression 
and protein levels, we correlated protein and mRNA expression 
ratios using PCC. We used the pathological microarray cohort 
(AC1, AC2, angiotensin II receptor type 1 data sets; Table 1) 
to identify 2796 mRNAs with consistent changes compared 
with controls across all data sets. Similarly, we identified 170 
proteins with consistent changes in AC and angiotensin sub-
proteomes compared with sham-operated mice. Subsequently, 
170 protein–transcript pairs were compared using respective 
fold changes compared with normal, revealing a significant 
but relatively modest positive correlation between the pro-
teomic and transcriptomic changes (PCC=0.25; P=0.0008; 
Figure  6A). Although the spectral counts of the mitochon-
drial subproteome did not correlate with mRNA expression 
(PCC=−0.19; P=0.11), myofilament and extracellular sub-
proteomes showed stronger positive correlation (PCC=0.52; 
P=0.16 and PCC=0.56; P=0.03, respectively; Figures  6A). 
Quantitative information for mRNA–protein relationships 
is listed in Table X in the online-only Data Supplement. 
Furthermore, we calculated average fold changes of mRNAs 
and proteins that mapped to unique Reactome27 pathways (289 

Figure 5.  Proteomic profiling of pathological cardiac hypertrophy. 
A, Validation of the solubility-based protein subfractionation meth-
odology in sham-operated hearts. The 4 mol/L guanidine frac-
tion (Guan) is enriched for myofilament and extracellular proteins 
whereas membrane and cytosolic proteins are depleted.  
B, Principal component analysis (PCA) of 1300 proteins separated 
control hearts from angiotensin (Ang)- and aortic constriction (AC)–
induced cardiac hypertrophy. C, Network-based visualization of 
functional enrichment of 764 proteins for gene ontology (GO) cel-
lular process. Each node represents a GO-cellular component (CC) 
term whereas a link represents shared proteins between terms. 
Analysis was performed using Enrichment Map tool (see Mate-
rial in the online-only Data Supplement). D, Bean plots reflecting 
distributions of the average (thick horizontal line) spectral counts of 
mitochondrial, myofilament, and extracellular proteins in the Guan 
extract. GPX3 indicates glutathione peroxidase 3; ITA, integrin-
alpha8; PC, principal component; and TNNI3, troponin I type 3.

Figure 6.  Correlation profiles of protein and mRNA changes in 
pathological cardiac hypertrophy. A, Scatter plot of changes in pro-
tein and transcript abundance (assessed using the t value of respec-
tive spectral counts) consisting of 170 protein–transcript pairs. 
Correlation was measured using the Pearson correlation coefficient. 
B, Correlation of mRNA and protein expressions across 289 Reac-
tome pathway components (Table IX in the online-only Data Supple-
ment). For each pathway that was identified in the pathological 
hypertrophy data set, the average mRNA and corresponding protein 
expression ratios were determined and plotted. CS DS indicates 
chondroitin sulfate dermatan sulfate; eNOS, endothelial nitric oxide 
synthase; and PCC, Pearson correlation coefficient.
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pathways represented by 631 mRNA–protein pairs). When 
considered the Reactome pathway level, mRNA–protein cor-
relation was much stronger (PCC=0.74; P=2.2×10−16) and 
across upregulated pathways such as chondroitin sulfate der-
matan sulfate metabolism, chondroitin sulfate and dermatan 
sulfate degradation, and endothelial nitric oxide synthase acti-
vation and regulation and downregulated pathways, including 
S phase and antigen processing-cross presentation (Figure 6B; 
Table XI in the online-only Data Supplement).

Discussion
We used a combined gene network and proteomic approach 
to characterize pathological and physiological LVH pheno-
types on a systems-wide level. This analysis shows that patho-
logical and physiological network topologies are significantly 
different, with the notable finding that there is differential 
gene wiring in pathological versus physiological stress. This 
coexpression rewiring captures differences in metabolic and 
energy production processes, contractile fibril organization, 
and ECM turnover, being highly consistent with the phe-
notype studied. Furthermore, many of these pathways were 
experimentally explored at the proteome level. This network 
biology approach contributes novel insights into the integrated 
mechanisms of pathological LVH and heart failure.

Cardiac Gene Networks
Several studies have compared gene expression profiles in 
pathological and physiological LVH using microarray experi-
ments.28 However, there seems to be a large discrepancy in the 
number of genes and types of signaling pathways reported for 
these phenotypes. One reason may be variability in statistical 
prioritization of significantly regulated genes.29 Thus, a compre-
hensive network-based meta-analysis of cardiac transcriptomes 
as presented here has advantages compared with conventional 
statistical approaches (eg, t test or ANOVA). In this study, we 
included relevant transcript expression data sets with multiple 
replicates to reduce noise. We also used an automated method 
for reverse engineering coexpression networks, thus eliminating 
selection bias typically associated with conventional statistical 
analysis of differential expression. Importantly, our data were 
combined at the level of correlation matrices rather than gene 
expression levels, which facilitates between-study comparisons 
and improves functional relevance of identified coexpressed 
genes.30 Functional enrichment of the pathological and physi-
ological networks revealed significant over-representation of 
genes implicated in cardiovascular system phenotypes and fea-
tures consistent with previous studies that reported altered fatty 
acid metabolism, cellular apoptosis, sarcomeric organization, 
and protein synthesis in pathological LVH31 and upregulation 
of cell survival, autophagy, and angiogenesis in physiological 
LVH.11 These findings suggest that gene network profiling cap-
tures the underlying biology of hypertrophy phenotypes.

Evaluation of gene connectivity patterns (ie, network 
topology) provides additional insights into organizational 
principles of gene networks. Compared with the physiologi-
cal network, the pathological LVH network was character-
ized by shorter average path length and higher average node 
degree. Although the connectivity of either pathological or 
physiological network was unaffected by removal of random 

genes, the physiological interactome collapsed in response to 
the removal of hub genes whereas the pathological network 
remained intact. These findings suggest that under pathologi-
cal stress, genes have considerably more coexpression links 
than under physiological stress. Biologically, this may reflect 
differences in transcriptional regulation between LVH pheno-
types.26 Recently, Dewey et al8 undertook a gene coexpression 
network analysis of pathological LVH, focusing on the extent 
of recapitulation of fetal gene expression programs, and could 
identify specific modules active during both development and 
disease. In contrast to that study and our previous coexpres-
sion analysis of LVH,32 in the current work, a major focus was 
the differential network topology comparison of pathological 
versus physiological LVH. The current analysis reveals that a 
substantial number of genes (1553) are differentially wired in 
pathological compared with physiological LVH. Furthermore, 
several functional groups of rewired genes could be identified, 
including those involved in electron transport, myofilament 
organization, and ECM remodeling. Conceptually, gene rewir-
ing can be regarded as the acquisition or loss of coexpression 
links in a stimulus-dependent manner. Therefore, rewiring is a 
direct result of changes in expression within the network. We 
experimentally validated the rewiring of 10 genes involved in 
ECM organization (Col1a1, Col4a1, Col5a2, Sparc), stress 
response (Serpinh1), and transcription and translation (Paip2b, 
Phtf2, Prps1, Rnf14, Tiprl) by confirming differential transcript 
expression of all rewired genes in pathological but not exercise 
models of cardiac hypertrophy. In addition, we observed no dif-
ferential expression for Rnf14, a poorly rewired transcript. The 
functional groups of rewired genes that have been identified 
(Table 3) include those known to be involved in pathological 
LVH (eg, ECM genes, tricarboxylic acid cycle cycle, genera-
tion of precursor metabolites)33 and other categories whose 
function in pathological LVH has not been previously defined 
(eg, regulation of RNA splicing, amino acid and derivative 
metabolism). This suggests that the differential wiring analy-
sis can facilitate identification of novel molecular pathways in 
pathological LVH. For example, Paip2b-encoded (poly(A)-
binding protein–interacting protein 2B) protein displaces 
poly(A)binding protein from the poly(A) tail of capped/poly-
adenylated mRNAs, thereby inhibiting translation.34 Observed 
downregulation of Paip2b in pathological LVH samples is con-
sistent with increased protein turnover in pathological LVH.35 
The cellular function of the Tiprl (TIP41, target of rapmycin 
signaling pathway regulator-like) gene has not been studied in 
the heart, but it was recently shown to inhibit mitogen acti-
vated protein kinase kinase7 -c-Jun N-terminal kinase activity 
in hepatocellular carcinoma through type 2A phosphatases.36

Consideration of gene rewiring may be a useful adjunct to 
traditional differential expression profiling approaches such as 
magnitude of fold change for several reasons. First, rewired 
genes are identified using data-driven analysis that, unlike dif-
ferential expression profiling, does not depend on introduction 
of rigid significance thresholds. This is an important advantage 
given that predefined statistical thresholds may significantly 
alter microarray interpretation.29 Second, because data sets 
are compared at the level of coexpression matrices, rewiring 
may be more sensitive to subtle expression changes, which are 
otherwise missed during conventional statistical comparison. 
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Finally, evaluation of rewiring patterns may uncover spatial 
relationships across gene neighborhoods, identifying higher-
level biologically relevant pathways, thus presenting additional 
level of information within a microarray experiment.

Gene–Protein Relationships
An important issue is the magnitude of correlation between 
changes in mRNA and protein levels, which may reflect the 
relative importance of transcriptional regulation versus other 
mechanisms. To address this, we undertook a proteomics anal-
ysis focused on defined functional groups identified from the 
rewired gene network of pathological LVH. We analyzed the 
ECM and myofilament subproteome because functional gene 
groups encoding proteins involved in regulating these struc-
tures were identified as differentially rewired. The method 
used to enrich the extracellular and myofilament proteome also 
enriched mitochondrial proteins, which was another functional 
category identified as rewired. Although proteomics cannot 
provide a global analysis of all expressed cardiac proteins, 
focusing on a subproteome allowed us to identify 12 of 30 
(40%), 80 of 226 (35%), and 22 of 102 (22%) rewired genes in 
myofilament, mitochondrial, and extracellular subproteomes. 
This finding confirms that enriching for specific subproteomes 
enhances the confidence of protein quantification.37

We found a modest positive correlation between changes 
in mRNA levels and protein abundance when assessing these 
at the individual gene level, especially for the specifically 
enriched subproteomes (myofilament and extracellular). This 
could be taken to indicate that nontranscriptional mechanisms, 
such as alterations in protein stability, are at least as important 
as transcriptional regulation. However, we found that mRNA–
protein relationships analyzed at the Reactome pathway level 
were substantially stronger. This striking finding suggests that 
the expression of entire pathways may be controlled at the 
transcriptional level38 and could, in part, be a manifestation of 
other mechanisms such as microRNA-mediated regulation.39 
In addition to validating the potential of network biology and 
differential wiring analyses to identify real biological changes 
in protein abundance, this finding also suggests that the net-
work approach may identify pathways that may not be readily 
detected by conventional comparisons of microarray profiles. 
Pathways found to be correlated at the mRNA–protein level 
included several known to be involved in the regulation of 
LVH, such as upregulation of chondroitin sulfate metabo-
lism40 and the endothelial nitric oxide synthase pathway41 and 
downregulation of S phase42 and antigen processing-cross pre-
sentation43 pathways.

Conclusions
Overall, our results represent a first attempt to provide insights 
into the integrated molecular mechanisms of pathological ver-
sus physiological cardiac hypertrophy by representing tran-
scriptomic and proteomic data as biological networks. The 
methodology that we have developed is freely accessible at 
http://sites.google.com/site/cardionetworks. With the increas-
ing availability of comprehensive omics data sets in the public 
domain, analytic approaches described herein may be useful 
for the elucidation of both general and specific mechanisms of 
cardiac diseases. Future expansion and modification of such 

methodology may be valuable in developing new therapeutic 
strategies or biomarkers.
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CLINICAL PERSPECTIVE
A fundamental question in heart failure research is to understand why disease stresses, such as hypertension, lead to patho-
logical cardiac hypertrophy and an accompanying risk of heart failure whereas physiological stresses, such as exercise or 
pregnancy, lead to physiological cardiac remodeling without major risk of heart failure. Previous studies have investigated 
the roles of specific molecular signaling pathways or have analyzed differences in gene expression in experimental models 
to try and identify similarities and differences between physiological and pathological hypertrophy. In the current work, a 
global network biology approach was developed using genomic and proteomic data from multiple experimental mouse mod-
els to study the molecular patterns that distinguish pathological and physiological hypertrophy. A network-based combined 
analysis of 127 publicly available genome-wide expression arrays using graph theory methods was able to define phenotype-
specific pathological and physiological gene coexpression networks. A key difference in network structure between the 
physiological and pathological networks was rewiring of a subset of genes, that is, their differential coexpression in the 2 
networks. This rewired network included several distinct cellular pathways and gene sets. Furthermore, targeted proteomic 
analysis revealed significant mRNA–protein correlation at the cellular pathway level (eg, for extracellular matrix compo-
nents). This combined gene network and proteomic analysis of left ventricular hypertrophy provides a platform for the 
identification and investigation of potentially novel pathways that distinguish physiological and pathological hypertrophy. 
In addition, a detailed freely accessible protocol is provided that allows similar analyses in other cardiovascular diseases.
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SUPPLEMENTAL MATERIAL 

  

Materials and Methods 

Microarray acquisition, pre-processing, and quality control 
Six mouse microarray datasets (n = 127 arrays) were obtained from the ArrayExpress 
database1 (Table 1). The datasets that were chosen for study represented different 
surgical/exercise and genetic models of pathological or physiological hypertrophy based on 
the respective phenotypes. The pathological cohort comprised a cardiomyocyte-specific AT1 
(angiotensin receptor type 1) transgenic heart dataset and two surgical AC (aortic 
constriction) datasets. The AT1 dataset consisted of wild type mice (n = 5), and the AT1 
transgenics undergoing cardiac failure and hypertrophy (n = 11). The AC1 dataset included 
time course data for untreated (n = 3), sham (n = 6), and AC (n = 10) operated male mice. The 
AC2 dataset consisted of time course data monitoring mice undergoing aortic constriction (n 
= 18) and sham- (n = 18) operated controls. The physiological cohorts included Akt, PI3K, 
and Swimming datasets. The Akt dataset consisted of normal heart tissue (n = 4), short-term 
(2 weeks) activated cardiac-specific Akt1 overexpression (n = 4), and switched-off Akt1 (2 
days following 2 week activation, n = 4). The PI3K dataset consisted of wild type hearts (n = 
3) and cardiac-specific overexpression of dominant-negative PI3K (n = 3) or a constitutively 
active form of PI3K (n = 3). Finally, the Swimming dataset, containing 30 arrays, monitored 
expression in mouse hearts under normal conditions, swimming (short- and long-term), and 
swimming followed by 1 week of rest. Mice were swum for 10 min – 90min twice a day. 
Mice were sacrificed at 10 min, 2.5 days, one week, two weeks, three weeks, or 4 weeks of 
exercise training, and after 4 weeks of swimming and one week of rest. Age-matched mice 
that did not exercise were used as controls. Heart weight/body weight ratios were increased 
with exercise by 29-49% (p<0.05). Detailed morphological and experimental data on this 
model can be obtained from 
http://cardiogenomics.med.harvard.edu/groups/proj1/pages/swim_home.html.Where 
applicable, raw expression values were normalized using Robust Multi-array Average 
(RMA)2 pipeline available through the affy3 package for R statistical environment. If raw 
array data was not readily available, processed gene expression profiles were log2-
transformed. To standardize multiple microarray platforms, Affymetrix probe names were 
mapped to Entrez gene identifiers (IDs)4 and in cases where multiple probesets mapped to a 
single gene, the probeset with largest inter-array variance in signal intensity was retained. 

We then calculated the correlation of gene expression between samples, and outliers with 
mean sample correlations more than three standard deviations below average were omitted 
until no outliers remained5. After outlier detection, quantile normalization was performed on 
the filtered data. 

 

Reverse engineering gene networks and generation of random networks 
Gene co-expression networks 

Pairwise similarity in gene expression vectors was expressed by the Pearson correlation 
coefficient (PCC). Gene pairs that correlated above a predefined PCC threshold were 
represented in the form of an undirected unweighted network, where nodes correspond to 
genes and links (edges) correspond to co-expression between genes. We used the partial 
correlation and information theory (PCIT) algorithm to eliminate non-significant co-
expressions for each microarray dataset6. This algorithm uses first-order partial correlation 
coefficients combined with an information theory approach to identify meaningful gene–gene 
associations. Briefly, the strength of the linear correlation is assessed between two genes 
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given its independence from a third gene. It has previously been applied to reverse-engineered 
gene co-expression networks in human B cells7 and elucidation of metabolic pathways in 
Saccharomyces cerevisiae8. 

Random network generation 

To compare real gene co-expression networks to randomly generated networks, we computed 
200 random networks using the Maslov-Sneppen approach9. Randomization was performed 
by rewiring edges in the original networks while preserving degrees of the respective nodes. 
The number of rewiring steps taken for each model was 4 x (number of edges). 

 

Graph theory methods 

Node degree 
The most elementary characteristic of a node is its degree, k, which indicates how 

many links the node has to other nodes. Degree is associated with the importance of a node, 
or its centrality with respect to other nodes in the network. Node degree of the ith gene is 
defined by 

  

where A is the symmetric adjacency matrix of a gene network. In biological networks, such 
as the yeast protein interaction network, nodes with high degree, also known as hubs, appear 
to be essential for cell survival10. 

Betweenness centrality 
Betweenness centrality (CBtw) can help to identify nodes with high information flow. 
Betwenness centrality of a node i in an unweighted and undirected network is given by: 

  

where gjk(i) is the number of shortest paths between nodes j and k that pass through node i and 
gjk is the total number of shortest paths connecting nodes j and k. Therefore, nodes with the 
highest betweenness control most of the information flow in the network, representing the 
critical points of the network. In yeast regulatory networks, these nodes appear to have a 
higher tendency to be essential genes11. 

Eigenvector centrality 
Eigenvector centrality (CEig) favors nodes that are connected to nodes that are themselves 
central within the network, thus taking into account overall network connectivity12. The CEig 
of a node i in an unweighted and undirected network is given by: 

  

where A is the adjacency matrix, N is number of nodes, M(i) is a set of neighbor nodes of i, 
and λ is the largest eigenvalue. For example, in protein-protein interaction networks, CEig is a 
measure for how well connected a protein is to other highly connected proteins in a network. 
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Clustering coefficient 
Clustering coefficient, CClu, intends to answer the question: in what percentage of cases, a 
node’s neighbors are also neighbors. For node i, CClu(i) is defined as: 

 

where n denotes the number of direct links connecting the ki nearest neighbors of node i. CClu 
ranges from zero (for a node that is part of a loosely connected group) to one (for a node at 
the center of a fully connected cluster). Thus, CClu measures the local clustering in the graph. 
In protein-protein interaction networks, genes that harbor a disease-causing mutation tend to 
avoid dense-clustering neighborhoods, unlike the genes that are essential for cell survival13. 

Density 
The density of a graph is defined as the ratio of the number of edges to the number of possible 
edges. Density values range between 0 and 1. In the former case, a graph is disconnected, 
while in the latter case, every vertex of the graph is fully interconnected. 

Shortest path 
The shortest path for an undirected and unweighted graph is defined as the shortest sequence 
of steps (i.e. distance) to be travelled between any two genes in a network. A graph theoretic 
analysis of metabolic reactions in Escherichia coli has revealed a larger than expected shortest 
path length (~8 reactions), suggesting that the metabolic world of this organism is not small in 
terms of biosynthesis and degradation14. 

Diameter 
Diameter is defined as the longest shortest path between any two nodes in a network. In an 
unweighted and undirected graph, it is the highest number of hops to be traveled between any 
two nodes. Interestingly, most real networks have surprisingly small diameters, and thus they 
can be classified as “small-world”. The idea comes from Stanley Milgram’s experiment in 
196915, who found that the average distance that letters have to travel in a social network 
(which was not visible a priori) was 6, hence the phrase “six degrees of separation”. 

K-core decomposition 
The k-core of a graph is defined as the maximum subgraph if every node has at least k links. 
K-core is determined by iteratively pruning all nodes with a degree lower than k and their 
incident links. The cores of a graph form layers: the (k+1)-core is always a subgraph of the k-
core. Consequently, a subgraph with higher coreness will contain nodes with higher degrees. 
Application of a core decomposition method recently allowed identification of the inherent 
layer structure of the yeast protein interaction network, whereby probability of proteins both 
being essential and evolutionary conserved successively increased toward the innermost 
cores16. 

Gene community detection 
In Pathological and Physiological networks gene communities were identified by 

optimization of modularity17, 18. The method is a greedy optimization procedure that attempts 
to optimize the modularity of a partition of the network. Modularity, Q, is defined as the 
fraction of all edges that lie within communities minus the expected value of the same 
quantity in a graph in which the vertices have the same degrees but edges are placed 
randomly18. It is given by: 
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Where, NC is the number of clusters, E is the number of edges in the network, Es is the 
number of edges between vertices within cluster s, and ks is the sum of the degrees of the 
vertices in cluster s. The value of the modularity measure Q ranges from 0 to 1, and the 
optimal clustering is achieved by maximizing Q. 

Graph-theoretic analyses were carried out using the Functional Genomic Assistant toolbox19 
for MATLAB (2009a, The MathWorks, Nattick MA) and the igraph20 library for R statistical 
environment. 

Phenotype and gene set enrichment analyses 
To determine phenotype-specificity of the Pathological and Physiological networks, we used 
the MamPhEA web tool21 for mammalian phenotype enrichment analysis. Phenotype 
information was acquired from the MGI database22. Individual gene sets were enriched for 
Gene Ontlogy (GO) Biological Process (BP) and Cellular Component (CC) terms. 
Additionally, pathway level enrichment was performed using the Reactome pathway 
database23. Enrichment analysis was performed using the model-based gene set enrichment 
analysis (MGSA)24. MGSA employs probabilistic inference via a Metropolis-Hasting 
algorithm to estimate the probability of categories to be active. The MGSA approach 
naturally takes category overlap into account and avoids the need for multiple testing 
corrections met in single-category enrichment analysis. All relevant gene sets were acquired 
from the Molecular Signatures Database (MSigDB, v3.0)25. 

Animal models 

Procedures were performed in accordance with the Guidance on the Operation of the Animals 
(Scientific Procedures) Act, 1986 (United Kingdom). Pathological cardiac hypertrophy was 
induced by the minimally invasive aortic constriction (AC), as previously described26. 
C57BL/6 mice 8-10 weeks of age were used. Sham constriction involved identical surgery 
apart from band placement. Physiological cardiac hypertrophy was achieved by a voluntary 
wheel running program27. Briefly, 8-10 weeks old C57BL/6 mice were initially introduced 
together into the running cage to learn from each other to run on the wheel. After a 7 day 
training period, mice were randomly housed individually and left to run up to 4 weeks. The 
running wheel is connected by a light triggered counting system, running time and distance is 
monitored and recorded with LabChart7. The average running distance was over 4km/day. 
Age-matched mice were also randomly assigned to the sedentary control group. They were 
housed in identical cages except for a non-rotating wheel for the same amount of time. 2 
weeks TAC and 4 weeks exercise running resulted in 65% and 14% increase compared to 
controls in terms of heart weight/tibia length ratio respectively (Supplementary Figure S4). 

qPCR assay 

RNA was extracted from mouse tissue using the RNeasy Mini Kit (Qiagen) according to the 
manufacturer's protocol. 1 μg of total RNA was reverse transcribed into cDNA with the High 
Capacity RNA to cDNA kit (Life tech). The reverse transcription (RT) was performed 
according to the company’s recommendations (10 µl of 2x Reverse-Transcription Buffer 
combined with 1 µl of 20x Reverse Transcription Enzyme mix) to a final volume of 20 µl. 
The RT reaction was set as follows: 37°C for 60 min and 95°C for 5 min using a Veriti 
thermocycler (Applied Biosystems). Taqman gene expression assays were used to assess the 
expression of individual genes: Col1a1, Col4a1, Col5a2, Paip2b, Phtf2, Prps1, Rnf14, 
Serpinh1, Sparc, Tiprl (Life Tech). For each gene, 10 ng of cDNA were combined with 0.5 µl 
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of Taqman gene expression Assay (20x) (Applied Biosystems) and 5 µl of the Taqman 
Universal PCR Master Mix No AmpErase UNG (2x) to a final volume of 10 µl. Quantitative 
PCR was performed on an Applied Biosystems 7900HT thermocycler at 95°C for 10 min, 
followed by 40 cycles of 95°C for 15 sec and 60°C for 1 min. All samples were standardized 
to Gapdh using SDS2.2 (Applied Biosystems) software. 

Animal models for proteomic experiments 

The in vivo models of pathological hypertrophy that were studied have been described 
previously28. Wild-type mice (n = 4) underwent implantation of osmotic minipumps, and 
received angiotensin II (1.1mg/kg/day) for 14 days. Pressure overload was induced by aortic 
constriction in wild-type mice (n = 4) anesthetized with an isoflurane/O2 mixture (2/98%). 
Sham surgery (n = 4) comprised an identical procedure with the exception of constriction. 
Tissues were obtained at 2 weeks post-surgery. 

Tissue preparation 
For the proteomics studies, we used LVs from 4 wild-type sham-operated mice, 3 angiotensin 
II-induced hypertrophy and 3 LVs following aortic constriction. Protein extraction was 
performed as described previously29. In brief, to remove plasma contaminants LVs were diced 
into small pieces and incubated with 0.5M NaCl, 10mM Tris pH 7.5, plus 
proteinase/phosphatase inhibitor cocktails (Sigma-Aldrich) and 25mM EDTA. To partially 
decellularize the hearts and skin the cardiomyocytes, samples were incubated with 0.1% SDS 
(10:1 buffer volume to tissue weight), including proteinase/phosphatase inhibitor cocktails 
and 25mM EDTA. Finally, to solubilize heavily crosslinked extracellular matrix (ECM) and 
myofilament proteins, samples were incubated in a 4M guanidine-HCl, 50mM sodium acetate 
pH 5.8 buffer (5:1 buffer volume to tissue weight), plus proteinase/phosphatase inhibitor 
cocktails and 25mM EDTA. Subsequently, deglycosylation (removal of glycosaminoglycan 
side chains) was achieved by enzymes (0.05U, chondroitinase ABC [Proteus vulgaris], 
keratanase [Bacteroides fragillis], heparatinase II [Flavobacterium heparinum], Sygma 
Aldrich) in a 150mM NaCl, 50mM sodium acetate pH 6.8 buffer supplemented with 
proteinase/phosphatase inhibitors and 10mM EDTA for 16h at 37oC.  

1D Electrophoresis 
Aliquots of the guanidine extracts were denatured and reduced in sample buffer containing 
100mM Tris, pH 6.8, 40% glycerol, 0.2% SDS, 2% beta-mercaptoethanol and 0.02% 
bromophenol blue and boiled at 960C for 10min. 35μg of protein per sample were loaded and 
separated on Bis-Tris discontinuous 4-12% polyacrylamide gradient gels (NuPage, 
Invitrogen). Pre-stained protein standards were run alongside the samples to allow molecular 
mass estimation of proteins (All Blue, Precision Plus, Bio-Rad Laboratories). 

Nanoflow liquid chromatography tandem mass spectrometry (LC-MS/MS) 
After electrophoresis, Coomassie staining was used for band excision to avoid cross-
contamination of fainter gel bands. To ensure equal loading in each LC-MS/MS experiment, 
the entire gel lane was excised and subjected to in-gel digestion with trypsin using an 
Investigator ProGest (Genomic Solutions) robotic digestion system. Tryptic peptides were 
separated on a nanoflow LC system and eluted with an 80 min gradient (10-25% B in 35 min, 
25-40% B in 5 min, 90% B in 10 min and 2% B in 30min where A=2% ACN, 0.1% formic 
acid in HPLC H2O and B = 90% ACN, 0.1% formic acid in HPLC H2O). The column was 
coupled to a nanospray source (Picoview). After the direct LC-MS run, the flow was switched 
and the portion stored in the capillary of the RePlay (Advion) device reanalyzed (ʻreplay 
runʼ). This injection system splits the gradient from the analytical column and allows the re-
analysis of the same sample in a single LC-MS/MS run30. Spectra were collected from an ion-
trap mass analyzer (LTQ Orbitrap XL, ThermoFisher Scientific) using full ion scan mode 
over the mass-to-charge (m/z) range 450-1600. MS/MS was performed on the top six ions in 
each MS scan using the data-dependent acquisition mode with dynamic exclusion enabled. 
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MS/MS peaklists were generated by extract_msn.exe and matched to mouse database 
(UniProtKB/Swiss-Prot) using SEQUEST v.28 (rev. 13), (Bioworks Browser 3.3.1 SP1, 
ThermoFisher Scientific) and X! Tandem, (Version 2007.01.01.2). Carboxyamidomethylation 
of cysteine was chosen as fixed modification and oxidation of methionine as variable 
modification. The mass tolerance was set at 1.5 AMU for the precursor ions and at 1.0 AMU 
for fragment ions. Two missed cleavages were allowed.   

Label-free quantification 

Spectral counts 

Scaffold (version 2.0.6, Proteome Software Inc., Portland, OR) was used to calculate the 
spectral counts and to validate MS/MS based peptide and protein identifications31, 32. 
According to the default values in the Scaffold software, the following peptide thresholds 
were applied: X! Tandem: -Log(Expect Scores) > 2.0, SEQUEST: deltaCn > 0.10 and XCorr 
> 2.5 (+2), 3.5 (+3) and 3.5 (+4). Peptide identifications were accepted if they could be 
established at greater than 95.0% probability as specified by the Peptide Prophet algorithm 31. 
Protein identifications were accepted if they could be established at greater than 99.0% 
probability with at least 2 independent peptides. RePlay samples were combined using the 
Scaffold software. Spectral counts were log2-transformed in order to increase the signal of 
low-abundant proteins.  

Ion intensity 

Progenesis LC-MS software (Version 3.1; Nonlinear Dynamics Ltd., Newcastle, UK) was 
used to perform protein relative quantification based on peptide ion abundance. To analyse 
the data from fractionated samples, a series of experiments was created with the software. An 
“experiment” was created by combining the LC-MS/MS runs of analogous fractions from 
each biological sample. The raw data containing LC-MS analyses acquired in profile mode 
with a high resolution mass spectrometer were uploaded, and for each experiment, the most 
representative LC-MS run was selected as reference run. The LC-MS patterns were then 
aligned with the reference run setting alignment vectors automatically to compensate for 
between-run variation in the LC separation technique. After inspection of the alignment 
results, additional vectors were manually inserted where needed. Peptide peaks were 
automatically detected and filtered based on charge state (only +2, +3 and +4 charges were 
selected). Subsequently, +4 charged peptides with 2 or less isotopes were removed from the 
analysis. The peptide ion abundance was then calculated as the sum of the peak areas within 
the isotopes boundaries. To correct experimental/technical variations, the peptide ion 
abundance was automatically normalized by calculation of a robust distribution of all peptide 
abundance ratios and determination of a global scaling factor. Peptide and protein 
identification was obtained from the Scaffold spectrum report containing the MS/MS search 
results. The protein abundance was then calculated as the sum of the abundances of all unique 
peptides belonging to the protein. Proteins were collated by combination of the single-fraction 
experiments in one overall multi-fraction experiment. Relative protein quantification between 
groups (e.g. treated vs. control) was considered for proteins having two or more unique 
quantified peptides. RePlay samples were treated as technical replicates and raw protein 
intensity values were log2-transformed prior to further statistical analysis.  

A comparison of protein spectral counting (SpC) and ion intensity (IoI) quantification is 
shown in Supplementary Figure S6, and indicates a significant correlation between the two 
approaches. 

Proteomic data availability 
Spectral counting and ion intensity reports are available in Datasets 1 and 2 respectively. 
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Western blotting 
Aliquots of the SDS and 4M guanidine extracts were mixed with denaturing sample buffer 
and boiled. 30μg of protein per sample were loaded and separated on 4-12% gradient gels as 
above. Proteins were then transferred on nitrocellulose membranes. Membranes were blocked 
in 5% fat-free milk powder in PBS and probed for 16h at 4ºC with primary antibodies to: 
TNNI3 (Abcam, ab10231), COL6A2 (Santa Cruz, sc-9855), GPX3 (RND Systems, AF4199), 
ITA8 (Santa Cruz, sc-25713) and β-Actin (Sigma-Aldrich, A5691). All antibodies were used 
at 1:500 dilution in 5% BSA. The membranes were treated with the appropriate secondary, 
horseradish peroxidase (HRP) conjugated antibodies (Dako) at a 1:2000 dilution. Finally, the 
blots were imaged using enhanced chemilluminenscence (ECL, GE Healthcare) and films 
were developed on a Xograph processor. 

Statistical analysis 
Differential expression analysis was performed by fitting a linear model with Empirical Bayes 
shrinkage to the log-intensities of expression values for each gene33. P-values were adjusted 
to control the expected false discovery rate using Benjamini-Hochberg correction. Adjusted 
p-values<0.05 were considered significant. 

Analysis of protein functional categories 
Functional enrichment analysis of proteins for Gene Ontology (GO) Cellular Process was 
performed using Enrichment Map tool34.
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Supplementary Figures 

 

 

Supplementary Figure S1. Histograms visualizing distribution of positive and negative 
Pearson Correlation Coefficients (PCCs) for all mouse microarray datasets. The PCIT 
algorithm6 was used to identify meaningful gene-gene co-expressions. All PCC values appear 
to be centered around ±0.75, suggesting a reasonable distribution of all coefficients. 

 

 

Supplementary Figure S2. Histograms demonstrating average node degrees of network 
layers in Pathological and Physiological networks. 
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Supplementary Figure S3. Conserved nodes (n=90) and co-expressions (n=60) in both 
Pathological and Physiological networks. Each node and edge represents a gene and a co-
expression that was observed in both LVH networks. Most of the shared co-expressions were 
between genes encoding extracellular matrix (ECM) proteins, for instance collagens (Col1a1, 
Col4a1, Col5a2, Col6a2) and serpin peptidase inhibitor clade F member 1 (Serpinf1). 
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Supplementary Figure S4A. Morphological data for AC and exercised-trained mice and 
corresponding WT controls. Student t-test p-values < 0.05 were considered statistically 
significant. LV = left ventricle, HW = heart weight. 
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Supplementary Figure S4B. Atrial natriuretic peptide (ANF) transcript expression profiles 
in AC and exercised-trained mice and corresponding WT controls. 

 

 

Supplementary Figure S5. MamPhEA-driven enrichment of genes common to the 
Pathological and Physiological networks for phenotypes associated with mutations in these 
genes. Dotted red line corresponds to adjusted p-value = 0.05. 
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Supplementary Figure S6. Comparison of protein spectral counting (SpC) with ion 
intensity (IoI) quantification. A) Venn diagram showing 270 proteins identified by both 
quantification methods. B) Frequency histogram showing distribution of spectral counts 
across 2268 proteins. C) Frequency histogram showing distribution of spectral counts across 
385 proteins. D-F) Pair-wise scatter plots between aortic constriction- (AC), angiotensin- 
(Ang), and sham-operated mice showing protein expression changes computed using either 
spectral counting or ion intensity quantification. Overall, there exists a significantly positive 
Pearson’s correlation (PCC) between the two quantification approaches. 
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Supplementary Data  
 
The following source data are available at: https://sites.google.com/site/cardionetworks/  
 
Supplementary Table 1. Pathological LVH Network (3634 nodes, 13558 edges). Provided 
as Drozdov_TableS1.xls  
 
Supplementary Table 2. Physiological LVH Network (3156 nodes, 4486 edges). Provided as 
Drozdov_TableS2.xls  
 
Supplementary Table 3. Annotation and topology of 3634 genes in the Pathological network 
sorted by node degree. Provided as Drozdov_TableS3.xls  
 
Supplementary Table 4. Annotation and topology of 3156 genes in the Physiological 
network sorted by node degree. Provided as Drozdov_TableS4.xls  
 
Supplementary Table 7. Annotation and topology of 1553 genes in the Rewired network 
sorted by the degree of rewiring. Provided as Drozdov_TableS7.xls  
 
Supplementary Table 9. Pathological hypertrophy mitochondrial, myofilament, and 
extracellular subproteomes. Provided as Drozdov_TableS9.xls 

Supplementary Table 10. Differential expression information for assigned protein spectra 
and corresponding gene expression in pathological hypertrophy datasets. Provided as 
Drozdov_TableS10.xls 

Supplementary Table 11. Average mRNA and protein fold changes for respective Reactome 
pathways. Table is sorted by decreasing mRNA level fold change. Provided as 
Drozdov_TableS11.xls 

Supplementary Dataset 1. Protein spectra counts in cardiac hypertrophy. Provided as 
Drozdov_Dataset1.xls  
 
Supplementary Dataset 2. Protein ion intensities in cardiac hypertrophy. Provided as 
Drozdov_Dataset2.xls  
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Supplementary Tables 

Supplementary Table 5. Functional enrichment of genes specific to the Pathological and 
Physiological networks for over-represented Gene Ontology (GO) Biological Process (BP), 
and Cellular Component (CC) terms, as well as Reactome pathways. inPopulation=total 
number of genes per term; inStudySet=number of genes in a network that mapped to a term; 
estimate=posterior probability estimate of functional enrichment; std.error=standard error of 
posterior probability estimate. 

Pathological LVH    
Reactome pathway inPopulation inStudySet estimate std.error 
METABOLISM::REACTOME::REACT_112621.
4 1476 248 0.776 0.029 

SIGNALING BY 
NGF::REACTOME::REACT_86675.5 227 46 0.617 0.009 

CELL SURFACE INTERACTIONS AT THE 
VASCULAR 
WALL::REACTOME::REACT_86886.5 

86 18 0.314 0.010 

MHC CLASS II ANTIGEN 
PRESENTATION::REACTOME::REACT_12719
4.1 

80 19 0.288 0.015 

MEMBRANE 
TRAFFICKING::REACTOME::REACT_88307.5 119 24 0.287 0.016 

MUSCLE 
CONTRACTION::REACTOME::REACT_108582
.5 

53 13 0.197 0.015 

ACTIVATION OF GENES BY 
ATF4::REACTOME::REACT_131139.1 10 5 0.186 0.011 

FATTY ACID, TRIACYLGLYCEROL, AND 
KETONE BODY 
METABOLISM::REACTOME::REACT_101329.
5 

187 39 0.176 0.023 

INTEGRIN CELL SURFACE 
INTERACTIONS::REACTOME::REACT_100071
.5 

82 18 0.172 0.008 

COLLAGEN BIOSYNTHESIS AND 
MODIFYING 
ENZYMES::REACTOME::REACT_138096.1 

56 13 0.165 0.011 

COLLAGEN 
FORMATION::REACTOME::REACT_131580.1 56 13 0.162 0.012 

RESPONSE TO ELEVATED PLATELET 
CYTOSOLIC 
CA2+::REACTOME::REACT_32515.6 

93 20 0.154 0.012 

CHAPERONIN-MEDIATED PROTEIN 
FOLDING::REACTOME::REACT_106427.5 44 10 0.152 0.011 

ELONGATION ARREST AND 
RECOVERY::REACTOME::REACT_82766.5 38 9 0.146 0.012 

INTERLEUKIN-2 
SIGNALING::REACTOME::REACT_29186.6 42 8 0.139 0.012 

PERK REGULATED GENE 
EXPRESSION::REACTOME::REACT_108469.5 13 5 0.134 0.007 

PLATELET 
DEGRANULATION::REACTOME::REACT_102
232.5 

88 19 0.128 0.006 

BASIGIN 
INTERACTIONS::REACTOME::REACT_91519.
5 

27 8 0.120 0.003 

THE CITRIC ACID (TCA) CYCLE AND 
RESPIRATORY ELECTRON 
TRANSPORT::REACTOME::REACT_114046.4 

148 32 0.117 0.010 

GOBP inPopulation inStudySet estimate std.error 
SMALL MOLECULE METABOLIC 
PROCESS::GO::GO:0044281 1065 190 0.668 0.124 
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ORGAN DEVELOPMENT::GO::GO:0048513 1976 344 0.647 0.063 

TISSUE DEVELOPMENT::GO::GO:0009888 998 185 0.353 0.065 
ESTABLISHMENT OF PROTEIN 
LOCALIZATION::GO::GO:0045184 410 75 0.200 0.030 

REGULATION OF APOPTOTIC 
PROCESS::GO::GO:0042981 1055 198 0.186 0.040 

CELLULAR KETONE METABOLIC 
PROCESS::GO::GO:0042180 509 97 0.156 0.072 

NEGATIVE REGULATION OF 
PROGRAMMED CELL 
DEATH::GO::GO:0043069 

588 118 0.119 0.028 

AMINE METABOLIC 
PROCESS::GO::GO:0009308 164 36 0.115 0.090 

NEGATIVE REGULATION OF APOPTOTIC 
PROCESS::GO::GO:0043066 583 118 0.113 0.026 

PROTEIN LOCALIZATION::GO::GO:0008104 683 112 0.112 0.062 
REGULATION OF PROGRAMMED CELL 
DEATH::GO::GO:0043067 1065 198 0.104 0.034 

BIOLOGICAL ADHESION::GO::GO:0022610 351 65 0.104 0.045 

GOCC inPopulation inStudySet estimate std.error 

MITOCHONDRIAL PART::GO::GO:0044429 466 110 0.941 0.003 
EXTRACELLULAR REGION 
PART::GO::GO:0044421 799 144 0.887 0.008 

SOLUBLE FRACTION::GO::GO:0005625 321 60 0.631 0.023 

CAVEOLA::GO::GO:0005901 64 19 0.605 0.019 

VESICULAR FRACTION::GO::GO:0042598 209 39 0.381 0.021 

MICROSOME::GO::GO:0005792 204 37 0.373 0.011 

LAMELLIPODIUM::GO::GO:0030027 97 20 0.340 0.009 

SECRETORY GRANULE::GO::GO:0030141 222 45 0.228 0.008 
MICROTUBULE ASSOCIATED 
COMPLEX::GO::GO:0005875 63 14 0.219 0.009 

CONTRACTILE FIBER PART::GO::GO:0044449 129 25 0.201 0.004 

CYTOSOLIC PART::GO::GO:0044445 154 28 0.160 0.012 
NEURON PROJECTION 
TERMINUS::GO::GO:0044306 96 23 0.136 0.006 

U12-TYPE SPLICEOSOMAL 
COMPLEX::GO::GO:0005689 24 7 0.115 0.003 

LATE ENDOSOME 
MEMBRANE::GO::GO:0031902 16 6 0.114 0.005 

MEMBRANE RAFT::GO::GO:0045121 217 43 0.109 0.007 
NUCLEAR UBIQUITIN LIGASE 
COMPLEX::GO::GO:0000152 21 6 0.102 0.004 

Physiological LVH    
Reactome inPopulation inStudySet estimate std.error 
DEADENYLATION-DEPENDENT MRNA 
DECAY::REACTOME::REACT_94503.5 53 15 0.895 0.009 

G ALPHA (I) SIGNALLING 
EVENTS::REACTOME::REACT_90291.5 185 30 0.538 0.020 

NUCLEAR RECEPTOR TRANSCRIPTION 
PATHWAY::REACTOME::REACT_99688.5 49 11 0.535 0.015 

GLUCOSE 
METABOLISM::REACTOME::REACT_80637.
5 

69 13 0.445 0.019 

DOWNSTREAM SIGNAL 
TRANSDUCTION::REACTOME::REACT_100
635.5 

92 20 0.305 0.013 

INTRINSIC PATHWAY FOR 
APOPTOSIS::REACTOME::REACT_98486.5 32 8 0.275 0.007 
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ACTIVATION OF CHAPERONE GENES BY 
ATF6-
ALPHA::REACTOME::REACT_138784.1 

10 5 0.269 0.008 

GLUCONEOGENESIS::REACTOME::REACT
_30814.6 38 9 0.236 0.016 

ION CHANNEL 
TRANSPORT::REACTOME::REACT_94109.5 47 9 0.228 0.014 

CENTROSOME 
MATURATION::REACTOME::REACT_96096.
5 

73 13 0.205 0.007 

AMINO ACID SYNTHESIS AND 
INTERCONVERSION 
(TRANSAMINATION)::REACTOME::REACT
_77379.5 

18 6 0.205 0.006 

ACTIVATION OF CHAPERONES BY ATF6-
ALPHA::REACTOME::REACT_90461.5 12 5 0.199 0.020 

RECRUITMENT OF MITOTIC 
CENTROSOME PROTEINS AND 
COMPLEXES::REACTOME::REACT_92567.5 

73 13 0.193 0.010 

TRANSPORT OF MATURE MRNA DERIVED 
FROM AN INTRON-CONTAINING 
TRANSCRIPT::REACTOME::REACT_94770.5 

53 11 0.174 0.007 

ACTIVATION OF BH3-ONLY 
PROTEINS::REACTOME::REACT_91879.5 12 5 0.153 0.008 

ENDOGENOUS 
STEROLS::REACTOME::REACT_77256.5 14 4 0.150 0.009 

ALPHA-LINOLENIC ACID (ALA) 
METABOLISM::REACTOME::REACT_12651
9.1 

12 4 0.149 0.005 

INTERFERON 
SIGNALING::REACTOME::REACT_127785.1 70 14 0.140 0.006 

SIGNAL 
AMPLIFICATION::REACTOME::REACT_796
54.5 

16 5 0.138 0.012 

ALPHA-LINOLENIC (OMEGA3) AND 
LINOLEIC (OMEGA6) ACID 
METABOLISM::REACTOME::REACT_14277
2.1 

12 4 0.135 0.007 

ION TRANSPORT BY P-TYPE 
ATPASES::REACTOME::REACT_108918.5 27 6 0.130 0.008 

ACTIVATION OF THE AP-1 FAMILY OF 
TRANSCRIPTION 
FACTORS::REACTOME::REACT_99415.5 

11 5 0.121 0.007 

ATTACHMENT OF GPI ANCHOR TO 
UPAR::REACTOME::REACT_85671.5 7 3 0.119 0.006 

HEXOSE 
UPTAKE::REACTOME::REACT_77183.5 41 8 0.112 0.008 

TRANSPORT OF MATURE TRANSCRIPT TO 
CYTOPLASM::REACTOME::REACT_33590.6 57 11 0.104 0.006 

SIGNALING BY 
PDGF::REACTOME::REACT_80348.5 115 22 0.102 0.011 

CHOLESTEROL 
BIOSYNTHESIS::REACTOME::REACT_3047
6.6 

24 5 0.101 0.004 

GOBP inPopulation inStudySet estimate std.error 
CYTOKINE-MEDIATED SIGNALING 
PATHWAY::GO::GO:0019221 141 28 0.697 0.050 

MAPK CASCADE::GO::GO:0000165 136 29 0.672 0.054 
RESPONSE TO REACTIVE OXYGEN 
SPECIES::GO::GO:0000302 86 21 0.575 0.035 

ORGANIC SUBSTANCE 
TRANSPORT::GO::GO:0071702 285 46 0.532 0.020 

GLAND DEVELOPMENT::GO::GO:0048732 238 39 0.403 0.048 

REGULATION OF REPRODUCTIVE 107 18 0.192 0.013 
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PROCESS::GO::GO:2000241 

CELLULAR RESPONSE TO CYTOKINE 
STIMULUS::GO::GO:0071345 210 37 0.182 0.057 

ICOSANOID METABOLIC 
PROCESS::GO::GO:0006690 48 12 0.174 0.019 

CELLULAR MACROMOLECULE 
CATABOLIC PROCESS::GO::GO:0044265 294 45 0.173 0.034 

PURINE RIBONUCLEOSIDE 
TRIPHOSPHATE CATABOLIC 
PROCESS::GO::GO:0009207 

203 33 0.171 0.025 

REGULATION OF CALCIUM ION 
TRANSPORT INTO 
CYTOSOL::GO::GO:0010522 

44 13 0.164 0.036 

RESPONSE TO TOXIN::GO::GO:0009636 58 17 0.157 0.029 
ER TO GOLGI VESICLE-MEDIATED 
TRANSPORT::GO::GO:0006888 24 9 0.157 0.010 

REGULATION OF RELEASE OF 
SEQUESTERED CALCIUM ION INTO 
CYTOSOL::GO::GO:0051279 

30 9 0.150 0.026 

GLUCOSE METABOLIC 
PROCESS::GO::GO:0006006 76 18 0.134 0.020 

EPITHELIAL CELL 
DIFFERENTIATION::GO::GO:0030855 211 32 0.131 0.033 

RIBONUCLEOSIDE TRIPHOSPHATE 
CATABOLIC PROCESS::GO::GO:0009203 204 33 0.125 0.012 

UNSATURATED FATTY ACID METABOLIC 
PROCESS::GO::GO:0033559 50 12 0.114 0.031 

ANGIOGENESIS::GO::GO:0001525 164 29 0.106 0.012 
POSITIVE REGULATION OF CELL 
CYCLE::GO::GO:0045787 111 20 0.103 0.013 

RIBONUCLEOPROTEIN COMPLEX 
SUBUNIT 
ORGANIZATION::GO::GO:0071826 

74 15 0.102 0.007 

CELLULAR RESPONSE TO 
STRESS::GO::GO:0033554 669 102 0.100 0.041 

GOCC inPopulation inStudySet estimate std.error 

PML BODY::GO::GO:0016605 51 12 0.883 0.008 

PORE COMPLEX::GO::GO:0046930 31 9 0.594 0.020 
RIBONUCLEOPROTEIN 
GRANULE::GO::GO:0035770 66 13 0.520 0.013 

SOLUBLE FRACTION::GO::GO:0005625 321 47 0.488 0.023 

VESICULAR FRACTION::GO::GO:0042598 209 34 0.383 0.030 

MICROTUBULE::GO::GO:0005874 130 21 0.343 0.010 

MICROSOME::GO::GO:0005792 204 33 0.303 0.011 
CATALYTIC STEP 2 
SPLICEOSOME::GO::GO:0071013 78 13 0.275 0.006 

RUFFLE::GO::GO:0001726 88 13 0.244 0.009 
CYTOPLASMIC STRESS 
GRANULE::GO::GO:0010494 26 7 0.237 0.008 

SPINDLE MICROTUBULE::GO::GO:0005876 37 8 0.207 0.011 

CELL FRACTION::GO::GO:0000267 825 115 0.198 0.033 
CCAAT-BINDING FACTOR 
COMPLEX::GO::GO:0016602 4 3 0.193 0.007 

NUCLEAR INCLUSION 
BODY::GO::GO:0042405 5 4 0.184 0.011 

SARCOLEMMA::GO::GO:0042383 94 17 0.169 0.006 

INCLUSION BODY::GO::GO:0016234 33 8 0.168 0.008 

SMAD PROTEIN 4 3 0.166 0.005 
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COMPLEX::GO::GO:0071141 

SPLICEOSOMAL 
COMPLEX::GO::GO:0005681 106 16 0.162 0.008 

NUCLEAR PORE::GO::GO:0005643 27 7 0.159 0.010 

T-TUBULE::GO::GO:0030315 36 9 0.156 0.004 
ENDOPLASMIC RETICULUM 
LUMEN::GO::GO:0005788 36 7 0.145 0.006 

ENDOCYTIC VESICLE::GO::GO:0030139 60 11 0.143 0.007 
PERINUCLEAR REGION OF 
CYTOPLASM::GO::GO:0048471 371 53 0.138 0.016 

TRANSCRIPTIONALLY ACTIVE 
CHROMATIN::GO::GO:0035327 8 3 0.124 0.007 

CORNIFIED ENVELOPE::GO::GO:0001533 24 5 0.123 0.005 

PROTEASOME COMPLEX::GO::GO:0000502 17 5 0.121 0.005 
MITOCHONDRIAL 
CRISTA::GO::GO:0030061 9 3 0.118 0.006 

CYTOPLASMIC MRNA PROCESSING 
BODY::GO::GO:0000932 32 7 0.117 0.004 

MULTIVESICULAR BODY::GO::GO:0005771 25 6 0.105 0.002 
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Supplementary Table 6. Functional enrichment of all genes specific in the Pathological and 
Physiological networks for over-represented Gene Ontology (GO) Biological Process (BP), 
and Cellular Component (CC) terms, as well as Reactome pathways. inPopulation=total 
number of genes per term; inStudySet=number of genes in a network that mapped to a term; 
estimate=posterior probability estimate of functional enrichment; std.error=standard error of 
posterior probability estimate 

Physiological LVH     

Reactome inPopulation inStudySet estimate std.error 
INTERFERON 
SIGNALING::REACTOME::REACT_127785.
1 

70 29 0.914 0.007 

GLUCOSE 
METABOLISM::REACTOME::REACT_8063
7.5 

69 24 0.837 0.016 

THE CITRIC ACID (TCA) CYCLE AND 
RESPIRATORY ELECTRON 
TRANSPORT::REACTOME::REACT_114046
.4 

148 46 0.760 0.012 

CYTOSOLIC TRNA 
AMINOACYLATION::REACTOME::REACT
_59282.6 

27 12 0.626 0.025 

NUCLEAR RECEPTOR TRANSCRIPTION 
PATHWAY::REACTOME::REACT_99688.5 

49 20 0.593 0.013 

ANTIGEN PROCESSING: 
UBIQUITINATION & PROTEASOME 
DEGRADATION::REACTOME::REACT_131
037.1 

64 29 0.517 0.016 

SIGNALING BY 
PDGF::REACTOME::REACT_80348.5 

115 47 0.483 0.012 

NCAM1 
INTERACTIONS::REACTOME::REACT_868
77.5 

34 17 0.466 0.006 

BRANCHED-CHAIN AMINO ACID 
CATABOLISM::REACTOME::REACT_3299
0.6 

17 9 0.392 0.017 

MITOCHONDRIAL PROTEIN 
IMPORT::REACTOME::REACT_144481.1 

47 15 0.363 0.016 

MUSCLE 
CONTRACTION::REACTOME::REACT_108
582.5 

53 18 0.359 0.009 

DEADENYLATION-DEPENDENT MRNA 
DECAY::REACTOME::REACT_94503.5 

53 19 0.329 0.012 

MEMBRANE 
TRAFFICKING::REACTOME::REACT_8830
7.5 

119 35 0.317 0.019 

DEADENYLATION OF 
MRNA::REACTOME::REACT_56462.6 

26 12 0.293 0.008 

GENERIC TRANSCRIPTION 
PATHWAY::REACTOME::REACT_85098.5 

141 42 0.276 0.017 

CIRCADIAN 
CLOCK::REACTOME::REACT_109335.5 

55 19 0.266 0.010 

PLATELET AGGREGATION (PLUG 
FORMATION)::REACTOME::REACT_90514
.5 

37 15 0.260 0.010 

CATION-COUPLED CHLORIDE 
COTRANSPORTERS::REACTOME::REACT
_81104.5 

7 5 0.248 0.010 

APOPTOSIS::REACTOME::REACT_100962.
5 

140 48 0.238 0.013 

ATTACHMENT OF GPI ANCHOR TO 
UPAR::REACTOME::REACT_85671.5 

7 5 0.228 0.014 

INWARDLY RECTIFYING K+ 
CHANNELS::REACTOME::REACT_108208.
5 

36 13 0.223 0.008 
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TRANSPORT OF MATURE MRNA 
DERIVED FROM AN INTRON-
CONTAINING 
TRANSCRIPT::REACTOME::REACT_94770.
5 

53 20 0.211 0.012 

SIGNALING BY 
EGFR::REACTOME::REACT_82411.5 

109 40 0.207 0.009 

LATENT INFECTION OF HOMO SAPIENS 
WITH MYCOBACTERIUM 
TUBERCULOSIS::REACTOME::REACT_146
901.1 

32 12 0.205 0.012 

PERK REGULATED GENE 
EXPRESSION::REACTOME::REACT_10846
9.5 

13 7 0.204 0.003 

MHC CLASS II ANTIGEN 
PRESENTATION::REACTOME::REACT_127
194.1 

80 27 0.196 0.012 

PHAGOSOMAL MATURATION (EARLY 
ENDOSOMAL 
STAGE)::REACTOME::REACT_126778.1 

32 12 0.187 0.007 

SIGNALING BY EGFR IN 
CANCER::REACTOME::REACT_118233.3 

111 41 0.183 0.007 

MITOTIC METAPHASE ANAPHASE 
TRANSITION::REACTOME::REACT_88639.
5 

7 5 0.177 0.004 

INSULIN RECEPTOR 
RECYCLING::REACTOME::REACT_81379.
5 

25 10 0.166 0.011 

ACTIVATION OF CHAPERONE GENES BY 
ATF6-
ALPHA::REACTOME::REACT_138784.1 

10 6 0.166 0.005 

ATP SENSITIVE POTASSIUM 
CHANNELS::REACTOME::REACT_147052.
1 

4 4 0.161 0.009 

ALPHA-LINOLENIC (OMEGA3) AND 
LINOLEIC (OMEGA6) ACID 
METABOLISM::REACTOME::REACT_1427
72.1 

12 6 0.157 0.006 

TRAFFICKING AND PROCESSING OF 
ENDOSOMAL 
TLR::REACTOME::REACT_129583.1 

12 6 0.153 0.006 

DOWNSTREAM SIGNAL 
TRANSDUCTION::REACTOME::REACT_10
0635.5 

92 36 0.152 0.010 

ALPHA-LINOLENIC ACID (ALA) 
METABOLISM::REACTOME::REACT_1265
19.1 

12 6 0.151 0.010 

PI 
METABOLISM::REACTOME::REACT_1446
13.1 

48 16 0.144 0.012 

RECRUITMENT OF MITOTIC 
CENTROSOME PROTEINS AND 
COMPLEXES::REACTOME::REACT_92567.
5 

73 24 0.143 0.006 

STRIATED MUSCLE 
CONTRACTION::REACTOME::REACT_886
44.5 

28 10 0.138 0.007 

GOLGI TO ER RETROGRADE 
TRANSPORT::REACTOME::REACT_78992.
5 

10 6 0.136 0.005 

MITOTIC G2-G2 M 
PHASES::REACTOME::REACT_105104.5 

88 28 0.136 0.005 

ENDOSOMAL SORTING COMPLEX 
REQUIRED FOR TRANSPORT 
(ESCRT)::REACTOME::REACT_141747.1 

28 10 0.135 0.018 

COPI MEDIATED 
TRANSPORT::REACTOME::REACT_80406.

10 6 0.135 0.006 
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5 

G2 M 
TRANSITION::REACTOME::REACT_34062.
6 

85 27 0.130 0.009 

CENTROSOME 
MATURATION::REACTOME::REACT_9609
6.5 

73 24 0.130 0.007 

INHIBITION OF REPLICATION 
INITIATION OF DAMAGED DNA BY RB1 
E2F1::REACTOME::REACT_82590.5 

6 5 0.128 0.005 

INHIBITION OF INSULIN SECRETION BY 
ADRENALINE 
NORADRENALINE::REACTOME::REACT_
86915.5 

34 13 0.127 0.006 

CREATINE 
METABOLISM::REACTOME::REACT_1067
12.5 

7 4 0.120 0.003 

INTRINSIC PATHWAY FOR 
APOPTOSIS::REACTOME::REACT_98486.5 

32 12 0.120 0.008 

CLEAVAGE OF GROWING TRANSCRIPT 
IN THE TERMINATION 
REGION::REACTOME::REACT_92795.5 

47 17 0.118 0.006 

E2F MEDIATED REGULATION OF DNA 
REPLICATION::REACTOME::REACT_1047
79.5 

27 10 0.117 0.003 

REGULATION OF GENE EXPRESSION BY 
HYPOXIA-INDUCIBLE 
FACTOR::REACTOME::REACT_137830.1 

9 5 0.115 0.007 

NCAM SIGNALING FOR NEURITE OUT-
GROWTH::REACTOME::REACT_88653.5 

60 26 0.114 0.008 

POST-ELONGATION PROCESSING OF 
THE 
TRANSCRIPT::REACTOME::REACT_10519
7.5 

47 17 0.114 0.005 

PYRUVATE METABOLISM AND CITRIC 
ACID (TCA) 
CYCLE::REACTOME::REACT_80935.5 

40 16 0.113 0.008 

SYNTHESIS OF PIPS AT THE PLASMA 
MEMBRANE::REACTOME::REACT_140792
.1 

31 11 0.109 0.007 

RNA POLYMERASE II TRANSCRIPTION 
TERMINATION::REACTOME::REACT_3337
6.6 

47 17 0.107 0.005 

DCC MEDIATED ATTRACTIVE 
SIGNALING::REACTOME::REACT_93929.5 

14 6 0.106 0.004 

LOSS OF PROTEINS REQUIRED FOR 
INTERPHASE MICROTUBULE 
ORGANIZATIONåÊFROM THE 
CENTROSOME::REACTOME::REACT_1066
86.5 

63 21 0.105 0.002 

DOWNREGULATION OF SMAD2 3:SMAD4 
TRANSCRIPTIONAL 
ACTIVITY::REACTOME::REACT_141912.1 

26 9 0.104 0.006 

     

GOBP inPopulation inStudySet estimate std.error 
INTRACELLULAR 
TRANSPORT%GO%GO:0046907 

544 155 0.572 0.214 

REGULATION OF BIOLOGICAL 
QUALITY%GO%GO:0065008 

1766 415 0.373 0.198 

METABOLIC PROCESS%GO%GO:0008152 4430 1033 0.371 0.228 

NEGATIVE REGULATION OF PROTEIN 
METABOLIC PROCESS%GO%GO:0051248 

371 110 0.354 0.146 

POSITIVE REGULATION OF METABOLIC 
PROCESS%GO%GO:0009893 

1800 455 0.348 0.175 

CATABOLIC PROCESS%GO%GO:0009056 927 271 0.347 0.159 
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PROGRAMMED CELL 
DEATH%GO%GO:0012501 

417 131 0.324 0.053 

TISSUE 
MORPHOGENESIS%GO%GO:0048729 

445 124 0.324 0.107 

LOCALIZATION%GO%GO:0051179 2335 535 0.271 0.172 

REGULATION OF RESPONSE TO 
STIMULUS%GO%GO:0048583 

1796 426 0.245 0.144 

BLOOD CIRCULATION%GO%GO:0008015 218 66 0.231 0.093 

CELLULAR CATABOLIC 
PROCESS%GO%GO:0044248 

808 239 0.208 0.117 

COENZYME METABOLIC 
PROCESS%GO%GO:0006732 

145 50 0.199 0.082 

PROTEIN 
HETEROOLIGOMERIZATION%GO%GO:00
51291 

92 34 0.199 0.073 

RESPONSE TO METAL 
ION%GO%GO:0010038 

151 54 0.187 0.076 

REGULATION OF MOLECULAR 
FUNCTION%GO%GO:0065009 

1590 356 0.185 0.116 

POSITIVE REGULATION OF CELLULAR 
PROCESS%GO%GO:0048522 

2901 698 0.184 0.087 

COFACTOR METABOLIC 
PROCESS%GO%GO:0051186 

176 56 0.176 0.073 

APOPTOTIC PROCESS%GO%GO:0006915 402 126 0.176 0.052 

REGULATION OF RNA 
SPLICING%GO%GO:0043484 

58 25 0.174 0.071 

REGULATION OF PRIMARY METABOLIC 
PROCESS%GO%GO:0080090 

2980 689 0.169 0.118 

CELL DEATH%GO%GO:0008219 465 141 0.169 0.038 

INTRACELLULAR SIGNAL 
TRANSDUCTION%GO%GO:0035556 

645 166 0.167 0.103 

CELLULAR COMPONENT 
ORGANIZATION%GO%GO:0016043 

2581 577 0.166 0.122 

RIBONUCLEOPROTEIN COMPLEX 
ASSEMBLY%GO%GO:0022618 

70 27 0.166 0.068 

CIRCULATORY SYSTEM 
PROCESS%GO%GO:0003013 

219 66 0.158 0.064 

REGULATION OF CELLULAR 
METABOLIC PROCESS%GO%GO:0031323 

3024 699 0.140 0.106 

EMBRYO DEVELOPMENT ENDING IN 
BIRTH OR EGG 
HATCHING%GO%GO:0009792 

558 151 0.130 0.053 

RIBONUCLEOPROTEIN COMPLEX 
SUBUNIT 
ORGANIZATION%GO%GO:0071826 

74 28 0.118 0.054 

LOCOMOTION%GO%GO:0040011 659 152 0.118 0.097 

POSITIVE REGULATION OF RESPONSE 
TO STIMULUS%GO%GO:0048584 

918 234 0.109 0.068 

CELL-CELL SIGNALING%GO%GO:0007267 458 100 0.109 0.047 

EPITHELIUM 
DEVELOPMENT%GO%GO:0060429 

492 136 0.107 0.042 

     

GOCC inPopulation inStudySet estimate std.error 
CELL-CELL JUNCTION%GO%GO:0005911 243 54 0.648 0.095 

EXTRACELLULAR REGION 
PART%GO%GO:0044421 

799 180 0.527 0.079 

EXTRACELLULAR 
MATRIX%GO%GO:0031012 

238 60 0.506 0.055 

CELL PART%GO%GO:0044464 10091 2203 0.479 0.071 

POSTSYNAPTIC 
MEMBRANE%GO%GO:0045211 

69 19 0.414 0.046 

CELL%GO%GO:0005623 10093 2203 0.330 0.055 
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EXTRACELLULAR 
SPACE%GO%GO:0005615 

652 152 0.285 0.046 

ORGANELLE 
MEMBRANE%GO%GO:0031090 

956 249 0.246 0.079 

CYTOSOL%GO%GO:0005829 932 264 0.196 0.115 

ENDOSOME%GO%GO:0005768 340 100 0.174 0.107 

NUCLEUS%GO%GO:0005634 3979 927 0.161 0.104 

MEPRIN A COMPLEX%GO%GO:0017090 1 1 0.144 0.017 

CELL JUNCTION%GO%GO:0030054 382 90 0.137 0.032 

PROTEIN COMPLEX%GO%GO:0043234 2337 588 0.125 0.020 

SYNAPTIC MEMBRANE%GO%GO:0097060 103 26 0.123 0.026 

SARCOLEMMA%GO%GO:0042383 94 37 0.121 0.074 

SYNAPSE%GO%GO:0045202 427 91 0.121 0.024 

ORGANELLE PART%GO%GO:0044422 3721 898 0.118 0.020 

MEMBRANE-BOUNDED 
ORGANELLE%GO%GO:0043227 

6708 1565 0.109 0.018 

SYNAPSE PART%GO%GO:0044456 293 59 0.105 0.018 

     

Pathological LVH     

Reactome inPopulation inStudySet estimate std.error 
MHC CLASS II ANTIGEN 
PRESENTATION::REACTOME::REACT_127
194.1 

80 41 0.997 0.002 

MITOCHONDRIAL PROTEIN 
IMPORT::REACTOME::REACT_144481.1 

47 20 0.972 0.005 

THE CITRIC ACID (TCA) CYCLE AND 
RESPIRATORY ELECTRON 
TRANSPORT::REACTOME::REACT_114046
.4 

148 69 0.944 0.014 

FATTY ACID, TRIACYLGLYCEROL, AND 
KETONE BODY 
METABOLISM::REACTOME::REACT_1013
29.5 

187 69 0.937 0.007 

GLUCOSE 
METABOLISM::REACTOME::REACT_8063
7.5 

69 30 0.867 0.018 

AMINO ACID AND DERIVATIVE 
METABOLISM::REACTOME::REACT_3334
7.6 

196 78 0.773 0.040 

CELL SURFACE INTERACTIONS AT THE 
VASCULAR 
WALL::REACTOME::REACT_86886.5 

86 33 0.545 0.021 

MUSCLE 
CONTRACTION::REACTOME::REACT_108
582.5 

53 24 0.537 0.029 

DEVELOPMENTAL 
BIOLOGY::REACTOME::REACT_115492.4 

387 127 0.495 0.023 

PLATELET 
DEGRANULATION::REACTOME::REACT_
102232.5 

88 40 0.479 0.036 

COLLAGEN 
FORMATION::REACTOME::REACT_131580
.1 

56 26 0.442 0.037 

CIRCADIAN 
CLOCK::REACTOME::REACT_109335.5 

55 23 0.433 0.007 

STRIATED MUSCLE 
CONTRACTION::REACTOME::REACT_886
44.5 

28 14 0.429 0.027 

PRE-MRNA 
SPLICING::REACTOME::REACT_95764.5 

129 42 0.391 0.041 

23 
 



 

ELONGATION ARREST AND 
RECOVERY::REACTOME::REACT_82766.5 

38 15 0.388 0.023 

COLLAGEN BIOSYNTHESIS AND 
MODIFYING 
ENZYMES::REACTOME::REACT_138096.1 

56 26 0.385 0.038 

MRNA 
SPLICING::REACTOME::REACT_98753.5 

129 42 0.375 0.014 

CHAPERONIN-MEDIATED PROTEIN 
FOLDING::REACTOME::REACT_106427.5 

44 18 0.370 0.026 

MEMBRANE 
TRAFFICKING::REACTOME::REACT_8830
7.5 

119 44 0.356 0.015 

INTEGRATION OF ENERGY 
METABOLISM::REACTOME::REACT_1058
10.5 

129 39 0.348 0.015 

PERK REGULATED GENE 
EXPRESSION::REACTOME::REACT_10846
9.5 

13 8 0.346 0.009 

LATENT INFECTION OF HOMO SAPIENS 
WITH MYCOBACTERIUM 
TUBERCULOSIS::REACTOME::REACT_146
901.1 

32 15 0.344 0.018 

RESPONSE TO ELEVATED PLATELET 
CYTOSOLIC 
CA2+::REACTOME::REACT_32515.6 

93 41 0.307 0.043 

PHAGOSOMAL MATURATION (EARLY 
ENDOSOMAL 
STAGE)::REACTOME::REACT_126778.1 

32 15 0.307 0.015 

GENERIC TRANSCRIPTION 
PATHWAY::REACTOME::REACT_85098.5 

141 43 0.290 0.014 

TRNA 
AMINOACYLATION::REACTOME::REACT
_78082.5 

45 16 0.279 0.010 

PHASE II 
CONJUGATION::REACTOME::REACT_876
08.5 

59 19 0.264 0.013 

CYTOSOLIC TRNA 
AMINOACYLATION::REACTOME::REACT
_59282.6 

27 11 0.263 0.014 

PROTEIN 
FOLDING::REACTOME::REACT_106260.5 

49 19 0.257 0.023 

NGF 
PROCESSING::REACTOME::REACT_83522.
5 

13 6 0.254 0.012 

ACTIVATION OF GENES BY 
ATF4::REACTOME::REACT_131139.1 

10 6 0.251 0.020 

COOPERATION OF PREFOLDIN AND TRIC 
CCT IN ACTIN AND TUBULIN 
FOLDING::REACTOME::REACT_96856.5 

31 14 0.249 0.007 

HEME 
BIOSYNTHESIS::REACTOME::REACT_985
85.5 

9 6 0.234 0.019 

INTERFERON 
SIGNALING::REACTOME::REACT_127785.
1 

70 23 0.214 0.008 

PLATELET ACTIVATION, SIGNALING 
AND 
AGGREGATION::REACTOME::REACT_103
583.5 

197 70 0.209 0.020 

CS DS 
DEGRADATION::REACTOME::REACT_145
805.1 

13 7 0.195 0.011 

KERATAN SULFATE 
DEGRADATION::REACTOME::REACT_143
490.1 

11 6 0.188 0.014 

REGULATION OF INSULIN 
SECRETION::REACTOME::REACT_88056.5 

101 32 0.164 0.009 
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PI3K EVENTS IN ERBB4 
SIGNALING::REACTOME::REACT_118344.
3 

34 14 0.164 0.005 

BRANCHED-CHAIN AMINO ACID 
CATABOLISM::REACTOME::REACT_3299
0.6 

17 10 0.158 0.027 

L1CAM 
INTERACTIONS::REACTOME::REACT_101
259.5 

81 33 0.150 0.021 

SYNTHESIS AND INTERCONVERSION OF 
NUCLEOTIDE DI- AND 
TRIPHOSPHATES::REACTOME::REACT_82
335.5 

18 8 0.149 0.006 

INSULIN RECEPTOR 
RECYCLING::REACTOME::REACT_81379.
5 

25 12 0.145 0.007 

POST NMDA RECEPTOR ACTIVATION 
EVENTS::REACTOME::REACT_111033.5 

33 16 0.140 0.005 

HYALURONAN 
METABOLISM::REACTOME::REACT_1450
24.1 

13 6 0.138 0.005 

REGULATION OF WATER BALANCE BY 
RENAL 
AQUAPORINS::REACTOME::REACT_97951
.5 

47 17 0.135 0.012 

CREB PHOSPHORYLATION THROUGH 
THE ACTIVATION OF 
CAMKII::REACTOME::REACT_145749.1 

16 10 0.129 0.006 

INTERLEUKIN-2 
SIGNALING::REACTOME::REACT_29186.6 

42 15 0.129 0.005 

REGULATION OF COMPLEMENT 
CASCADE::REACTOME::REACT_144679.1 

14 6 0.125 0.006 

CATION-COUPLED CHLORIDE 
COTRANSPORTERS::REACTOME::REACT
_81104.5 

7 4 0.125 0.008 

BASIGIN 
INTERACTIONS::REACTOME::REACT_915
19.5 

27 12 0.123 0.008 

HYALURONAN UPTAKE AND 
DEGRADATION::REACTOME::REACT_131
431.1 

10 5 0.120 0.008 

TRANSFERRIN ENDOCYTOSIS AND 
RECYCLING::REACTOME::REACT_146500
.1 

27 12 0.117 0.007 

SIGNALING BY 
NGF::REACTOME::REACT_86675.5 

227 73 0.114 0.008 

GAP JUNCTION TRAFFICKING AND 
REGULATION::REACTOME::REACT_98857
.5 

13 10 0.112 0.004 

RAS ACTIVATION UOPN CA2+ INFUX 
THROUGH NMDA 
RECEPTOR::REACTOME::REACT_141113.1 

17 10 0.112 0.015 

UNBLOCKING OF NMDA RECEPTOR, 
GLUTAMATE BINDING AND 
ACTIVATION::REACTOME::REACT_84448.
5 

16 8 0.111 0.009 

GLUTATHIONE 
CONJUGATION::REACTOME::REACT_289
85.6 

20 7 0.111 0.011 

ACTIVATION OF NMDA RECEPTOR UPON 
GLUTAMATE BINDING AND 
POSTSYNAPTIC 
EVENTS::REACTOME::REACT_109325.5 

37 17 0.109 0.005 

GLYCOLYSIS::REACTOME::REACT_96470
.5 

35 15 0.108 0.012 

CREB PHOSPHORYLATION THROUGH 
THE ACTIVATION OF 

27 13 0.105 0.004 
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RAS::REACTOME::REACT_130630.1 

NGF SIGNALLING VIA TRKA FROM THE 
PLASMA 
MEMBRANE::REACTOME::REACT_91043.
5 

135 50 0.102 0.010 

REGULATION OF GENE EXPRESSION BY 
HYPOXIA-INDUCIBLE 
FACTOR::REACTOME::REACT_137830.1 

9 6 0.101 0.008 

INTERLEUKIN RECEPTOR SHC 
SIGNALING::REACTOME::REACT_76978.5 

28 10 0.100 0.006 

     

GOBP inPopulation inStudySet estimate std.error 
POSITIVE REGULATION OF CELLULAR 
PROCESS%GO%GO:0048522 

2901 796 0.892 0.039 

METABOLIC PROCESS%GO%GO:0008152 4430 1138 0.780 0.067 

CELL-CELL SIGNALING%GO%GO:0007267 458 124 0.651 0.040 

CELLULAR COMPONENT 
ORGANIZATION%GO%GO:0016043 

2581 670 0.510 0.096 

INTRACELLULAR 
TRANSPORT%GO%GO:0046907 

544 163 0.503 0.029 

TISSUE DEVELOPMENT%GO%GO:0009888 998 308 0.496 0.085 

CELLULAR COMPONENT 
ORGANIZATION OR 
BIOGENESIS%GO%GO:0071840 

2647 680 0.315 0.083 

REGULATION OF BIOLOGICAL 
QUALITY%GO%GO:0065008 

1766 487 0.296 0.043 

NEGATIVE REGULATION OF NITROGEN 
COMPOUND METABOLIC 
PROCESS%GO%GO:0051172 

897 265 0.252 0.030 

CELLULAR 
LOCALIZATION%GO%GO:0051641 

1007 266 0.223 0.022 

EPITHELIUM 
DEVELOPMENT%GO%GO:0060429 

492 155 0.220 0.070 

NEGATIVE REGULATION OF RNA 
METABOLIC PROCESS%GO%GO:0051253 

821 241 0.187 0.028 

REGULATION OF RNA METABOLIC 
PROCESS%GO%GO:0051252 

1841 503 0.181 0.065 

APOPTOTIC PROCESS%GO%GO:0006915 402 134 0.175 0.041 

IMMUNE SYSTEM 
PROCESS%GO%GO:0002376 

888 237 0.173 0.027 

NEGATIVE REGULATION OF APOPTOTIC 
PROCESS%GO%GO:0043066 

583 193 0.157 0.038 

ESTABLISHMENT OF PROTEIN 
LOCALIZATION%GO%GO:0045184 

410 136 0.156 0.029 

NEGATIVE REGULATION OF 
NUCLEOBASE-CONTAINING COMPOUND 
METABOLIC PROCESS%GO%GO:0045934 

884 258 0.139 0.022 

NEGATIVE REGULATION OF CELLULAR 
METABOLIC PROCESS%GO%GO:0031324 

1209 351 0.135 0.020 

CATABOLIC PROCESS%GO%GO:0009056 927 285 0.133 0.068 

ESTABLISHMENT OF LOCALIZATION IN 
CELL%GO%GO:0051649 

786 218 0.128 0.043 

SMALL MOLECULE METABOLIC 
PROCESS%GO%GO:0044281 

1065 333 0.113 0.047 

NEGATIVE REGULATION OF CELL 
DEATH%GO%GO:0060548 

615 200 0.111 0.029 

NEGATIVE REGULATION OF 
PROGRAMMED CELL 
DEATH%GO%GO:0043069 

588 194 0.104 0.016 

PROTEIN TRANSPORT%GO%GO:0015031 387 127 0.102 0.018 

     

GOCC inPopulation inStudySet estimate std.error 
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CELL FRACTION%GO%GO:0000267 825 257 0.718 0.180 

CYTOSOL%GO%GO:0005829 932 286 0.633 0.222 

MITOCHONDRIAL 
PART%GO%GO:0044429 

466 198 0.627 0.220 

SPLICEOSOMAL 
COMPLEX%GO%GO:0005681 

106 39 0.578 0.202 

TRANSCRIPTION FACTOR 
COMPLEX%GO%GO:0005667 

314 87 0.494 0.176 

EXTRACELLULAR REGION 
PART%GO%GO:0044421 

799 242 0.437 0.136 

NUCLEAR UBIQUITIN LIGASE 
COMPLEX%GO%GO:0000152 

21 11 0.349 0.126 

ENDOPLASMIC RETICULUM-GOLGI 
INTERMEDIATE 
COMPARTMENT%GO%GO:0005793 

36 16 0.294 0.107 

EXTRACELLULAR 
MATRIX%GO%GO:0031012 

238 85 0.269 0.107 

MYOFIBRIL%GO%GO:0030016 140 51 0.265 0.097 

STRESS FIBER%GO%GO:0001725 53 24 0.242 0.085 

PROTEASOME 
COMPLEX%GO%GO:0000502 

17 8 0.238 0.082 

CONTRACTILE FIBER%GO%GO:0043292 153 55 0.233 0.079 

CYTOPLASMIC 
MICROTUBULE%GO%GO:0005881 

25 10 0.202 0.073 

POLYSOME%GO%GO:0005844 27 10 0.202 0.070 

EXTRINSIC TO PLASMA 
MEMBRANE%GO%GO:0019897 

71 29 0.198 0.064 

MICROTUBULE ASSOCIATED 
COMPLEX%GO%GO:0005875 

63 20 0.191 0.067 

CAVEOLA%GO%GO:0005901 64 26 0.185 0.064 

PEROXISOMAL PART%GO%GO:0044439 53 21 0.175 0.060 

ACTIN FILAMENT 
BUNDLE%GO%GO:0032432 

56 24 0.174 0.064 

LATE ENDOSOME%GO%GO:0005770 106 37 0.172 0.061 

MEMBRANE RAFT%GO%GO:0045121 217 74 0.169 0.062 

INTRACELLULAR%GO%GO:0005622 8779 2227 0.161 0.161 

EXTRINSIC TO 
MEMBRANE%GO%GO:0019898 

96 34 0.161 0.052 

SIGNALOSOME%GO%GO:0008180 9 6 0.160 0.056 

MICROBODY PART%GO%GO:0044438 53 21 0.158 0.056 

SYNAPSE%GO%GO:0045202 427 110 0.148 0.148 

CELL JUNCTION%GO%GO:0030054 382 102 0.142 0.142 

APICAL PART OF CELL%GO%GO:0045177 296 86 0.140 0.104 

CELL SURFACE%GO%GO:0009986 550 161 0.138 0.137 

INTERNAL SIDE OF PLASMA 
MEMBRANE%GO%GO:0009898 

90 33 0.134 0.047 

COATED MEMBRANE%GO%GO:0048475 35 13 0.122 0.041 

MEMBRANE COAT%GO%GO:0030117 35 13 0.120 0.040 

ANAPHASE-PROMOTING 
COMPLEX%GO%GO:0005680 

17 9 0.116 0.038 

INTRINSIC TO 
MEMBRANE%GO%GO:0031224 

2162 223 0.107 0.107 

CORTICAL 
CYTOSKELETON%GO%GO:0030863 

60 20 0.106 0.036 

LATE ENDOSOME 
MEMBRANE%GO%GO:0031902 

16 9 0.101 0.033 
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Supplementary Table S8. Functional enrichment of genes in the top 25th percentile of 
differential wiring for over-represented Gene Ontology (GO) Biological Process (BP), and 
Cellular Component (CC) terms, as well as Reactome pathways. inPopulation=total number 
of genes per term; inStudySet=number of genes in a network that mapped to a term; 
estimate=posterior probability estimate of functional enrichment; std.error=standard error of 
posterior probability estimate 

Reactome inPopulation inStudySet estimate std.error 
BRANCHED-CHAIN AMINO ACID 
CATABOLISM::REACTOME::REACT_32990.
6 

17 6 0.712 0.027 

GOBP inPopulation inStudySet estimate std.error 
MYELIN ASSEMBLY%GO%GO:0032288 11 4 0.921 0.035 

HYDROGEN PEROXIDE METABOLIC 
PROCESS%GO%GO:0042743 

25 5 0.624 0.059 

COENZYME METABOLIC 
PROCESS%GO%GO:0006732 

145 13 0.618 0.076 

MRNA SPLICE SITE 
SELECTION%GO%GO:0006376 

12 4 0.617 0.073 

NEGATIVE REGULATION OF 
TRANSLATIONAL 
INITIATION%GO%GO:0045947 

12 3 0.438 0.035 

PROTEIN LOCALIZATION IN 
MITOCHONDRION%GO%GO:0070585 

27 4 0.376 0.044 

POSITIVE REGULATION OF 
MACROAUTOPHAGY%GO%GO:0016239 

10 3 0.322 0.057 

REGULATION OF MUSCLE 
ADAPTATION%GO%GO:0043502 

27 4 0.313 0.028 

REGULATION OF VASCULAR 
ENDOTHELIAL GROWTH FACTOR 
RECEPTOR SIGNALING 
PATHWAY%GO%GO:0030947 

23 4 0.269 0.046 

SPLICEOSOMAL COMPLEX 
ASSEMBLY%GO%GO:0000245 

19 4 0.264 0.060 

GOCC inPopulation inStudySet estimate std.error 
NA NA NA NA NA 
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